Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical properties, specific

The bulk (or volume)-specific resistance is one of the most useful general electrical properties. Specific resistance is a physical quantity that may vary more than 10 in readily available materials. This unusually wide range of conductivity allows wide variety of electrical applications. Conductive materials, such as copper, have specific resistance values of about 10 fl-cm, whereas good insulators such as polytetrafluoroethylene and LDPE have values of about 10 fl-cm. Specific resistance is calculated from the following equation where R is the resistance in ohms, a is the pellet area in square centimeters, t is the pellet thickness in centimeter, and P is the specific resistance in ohm-centimeter ... [Pg.446]

Figure IV gives the general properties of the new water based resin ED24574. The key properties to note are the electric properties. Specifically, the dielectric breakdown voltage is a safe margin above the minimum requirements. The remainder of the electrical properties are also well above the requirements. Figure IV gives the general properties of the new water based resin ED24574. The key properties to note are the electric properties. Specifically, the dielectric breakdown voltage is a safe margin above the minimum requirements. The remainder of the electrical properties are also well above the requirements.
So why is the extrusion of ceramics widespread and successful At first sight, the technical challenges seem considerable. For example, the particles used to form many well-shaped objects are frequently hard and abrasive. Sometimes the objects that are made need to be of very precise size or needing good mechanical or electrical properties specific to an application. The key to turning an abrasive material into a mouldable one that can be readily shaped by an auger extruder lies in the presence of, or addition of, a compound such as a clay. For some applications this compound is present naturally. Most other materials, including most synthetic ones, need to have added a clay or other additive to turn the material into one that can be moulded. [Pg.137]

The material can be patterned for microdevice applications. The surfaces have excellent resistance to solvents, water, acids, and bases. Typically materials can be soaked in strong solvents for the unimplanted polymer for many hours and demonstrate minimal changes in electrical properties. Specifically, the implant layer remains unchanged through photoresist spin coating, developing, and etching. The implant layer can usually be etched by an plasma. [Pg.1013]

Electrical Properties. Poly(methyl methacrylate) has specific electrical properties that make it unique (Table 4). The surface resistivity of poly(methyl methacrylate) is higher than that of most plastic materials. Weathering and moisture affect poly(methyl methacrylate) only to a minor degree. High resistance and nontracking characteristics have resulted in its use in high voltage appHcations, and its excellent weather resistance has promoted the use of poly(methyl methacrylates) for outdoor electrical appHcations (22). [Pg.261]

Researchers at the MoneU Center (Philadelphia, Pennsylvania) are using a variety of electrophysical and biochemical techniques to characterize the ionic currents produced in taste and olfactory receptor cells by chemical stimuli. These studies are concerned with the identification and pharmacology of the active ion channels and mode of production. One of the techniques employed by the MoneU researchers is that of "patch clamp." This method aUows for the study of the electrical properties of smaU patches of the ceU membrane. The program at MoneU has determined that odors stimulate intraceUular enzymes to produce cycUc adenosine 3, 5 -monophosphate (cAMP). This production of cAMP promotes opening of the ion channel, aUowing cations to enter and excite the ceU. MoneU s future studies wiU focus on the connection of cAMP, and the production of the electrical response to the brain. The patch clamp technique also may be a method to study the specificity of receptor ceUs to different odors, as weU as the adaptation to prolonged stimulation (3). [Pg.292]

General-Purpose Polystyrene. Polystyrene is a high molecular weight M = 2 — 3 x 10 ), crystal-clear thermoplastic that is hard, rigid, and free of odor and taste. Its ease of heat fabrication, thermal stabiUty, low specific gravity, and low cost result in mol dings, extmsions, and films of very low unit cost. In addition, PS materials have excellent thermal and electrical properties that make them useful as low cost insulating materials (see Insulation, ELECTRIC Insulation, thermal). [Pg.505]

Behavior. Diffusion, Brownian motion, electrophoresis, osmosis, rheology, mechanics, and optical and electrical properties are among the general physical properties and phenomena that are primarily important in coUoidal systems (21,24—27). Of course, chemical reactivity and adsorption often play important, if not dominant, roles. Any physical and chemical feature may ultimately govern a specific industrial process and determine final product characteristics. [Pg.394]

Material property specifications must be written by design and material engineers to control engineering requirements and to control incoming raw material quahty. Material property requirements depend on various ia-use functional needs ia terms of electrical, mechanical, thermal, chemical, optical, and magnetic properties. [Pg.124]

Udel is a slightly yellow but tianspaient engineering thermoplastic. It has low flammability and smoke emission and good electrical properties. It has excellent resistance to water, steam, and alkaline solutions. Specific uses for Udel iaclude microwave cookware, beverage dispensers, coffee brewers, cookware, hair dryers, com poppers, and steam table trays. Its steam resistance makes it particularly fit for a dishwasher environment. Properties of polysulfone resias ate given ia Table 11. [Pg.272]

Both the chemical solubility and the electrical properties are consistent with those expected of a lightly polar polymer, whilst reactivity is consistent with that of a polymer containing hydrolysable carbonate ester linkages partially protected by aromatic hydrocarbon groupings. The influence of these factors on specific properties is amplified in subsequent sections. [Pg.563]

The structural chemistry of the actinides is often similar to that of lighter transition metals, such as Zr and Hf, and to that of the lanthanides however, the diffuse nature of the 5/ orbitals leads to some differences and specifically to interesting magnetic and electrical properties. The actinide sulfides are generally isostructural with the selenides, but not with the analogous tellurides. The binary chalcogenides of uranium and thorium have been discussed in detail [66], but the structural... [Pg.31]

Zirconia nanopowders have attracted much attention recently due to their specific optical and electrical properties [38] and as catalysts [39]. Liang et al. [40] have synthesized pure Zr02 nanopowders via sonochemical method. In this study, the use of ultrasound has dramatically reduced the temperature of reaction and made the reaction conditions very easy to maintain. [Pg.201]

It has also to be remembered that the band model is a theory of the bulk properties of the metal (magnetism, electrical conductivity, specific heat, etc.), whereas chemisorption and catalysis depend upon the formation of bonds between surface metal atoms and the adsorbed species. Hence, modern theories of chemisorption have tended to concentrate on the formation of bonds with localized orbitals on surface metal atoms. Recently, the directional properties of the orbitals emerging at the surface, as discussed by Dowden (102) and Bond (103) on the basis of the Good-enough model, have been used to interpret the chemisorption behavior of different crystal faces (104, 105). A more elaborate theoretical treatment of the chemisorption process by Grimley (106) envisages the formation of a surface compound with localized metal orbitals, and in this case a weak interaction is allowed with the electrons in the metal. [Pg.148]

See also Methacrylate monomers polymerization data for, 16 279t Methacrylic ester polymers, 16 271-298. See also Methacrylate monomers Methacrylic esters analytical test methods and specifications for, 16 291-293 bulk polymerization of, 16 281-282 chemical properties of, 16 276-277 electrical properties of, 16 276 emulsion polymerization of, 16 285-288 glass transition temperature of, 16 273-274... [Pg.572]

Using a simple amphoteric model for the mineral surface, we have demonstrated the role specific chemical binding reactions of potential determining Ions In determining the electrical properties and thermodynamics of the oxide/solution interfaces. A by-product of our study Is that under appropriate conditions, an amphoteric surface can show marked deviations from ideal Nernstlan behaviour. The graphical method also serves to Illustrate the... [Pg.112]


See other pages where Electrical properties, specific is mentioned: [Pg.359]    [Pg.207]    [Pg.359]    [Pg.207]    [Pg.353]    [Pg.312]    [Pg.72]    [Pg.155]    [Pg.368]    [Pg.321]    [Pg.504]    [Pg.235]    [Pg.122]    [Pg.88]    [Pg.629]    [Pg.169]    [Pg.1017]    [Pg.328]    [Pg.381]    [Pg.659]    [Pg.290]    [Pg.554]    [Pg.383]    [Pg.178]    [Pg.715]    [Pg.198]    [Pg.468]    [Pg.200]    [Pg.675]    [Pg.27]    [Pg.378]    [Pg.122]    [Pg.240]    [Pg.72]    [Pg.724]    [Pg.319]   


SEARCH



Electrical properties, specific conductivity

Properties specification

Specific properties

© 2024 chempedia.info