Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal triflates catalysts

In addition to Bronsted acid promoted Fischer-type glycosylations, Lewis acids have been investigated (Scheme 3.4). A variety of Lewis acids promote glycosylation under mild conditions, often in substoichiometric amounts. The earliest examples include ZnCl2 [18] and FeCl3 [19], although these readions were demonstrated only for preparation of trehalose-type disaccharides. Mukaiyama et al. have very recently developed metal triflate catalysts for the dehydrative glycosylation with... [Pg.117]

The metal-catalyzed hydroalkoxylation of nonactivated olefins has seen much activity recently. Numerous publications on electrophilic metal-triflate catalysts have appeared, and a general picture of Lewis-assisted Br0nsted t3q>e acid catalysis... [Pg.130]

Water-stable ionic liquids were later used for Friedel-Crafts acylations, using a metal triflate catalyst. Cu(0Tf)2 proved to be the most efficient catalyst for this transformation, and acylation of anisole by benzoyl chloride in [bmim][BF4] gave almost exclusively the para adduct 68 (Scheme 24). This reaction can also be performed in organic solvents, but an accelerated rate is observed in ionic liquids.Catalyst loading can be decreased (up to 1 mol%) using bismuth(m) salts as catalysts. ... [Pg.37]

Bismuth is another example of nonrecommended cation by Table 8.1. It is also one of the most investigated metal triflate catalysts in organic reactions. Ollevier and Lavie-Compin used Bi(OTf)3 as catalyst for the Mannich reaction in water [28], Cyclohexene oxide was treated with amines such as p-methylaniline to isolate the corresponding p-amino alcohols in good yields (Equation (8.10)). Sterically more hindered anilines such as o-methylaniline also led to the alcohols in good yield (SDS, sodium dodecyl sulfate). [Pg.226]

Scheme 21 N-Glycosylation of methane sulphonamide with o-glycal 41, under various metal triflate catalysts. Scheme 21 N-Glycosylation of methane sulphonamide with o-glycal 41, under various metal triflate catalysts.
Among the J ,J -DBFOX/Ph-transition(II) metal complex catalysts examined in nitrone cydoadditions, the anhydrous J ,J -DBFOX/Ph complex catalyst prepared from Ni(C104)2 or Fe(C104)2 provided equally excellent results. For example, in the presence of 10 mol% of the anhydrous nickel(II) complex catalyst R,R-DBFOX/Ph-Ni(C104)2, which was prepared in-situ from J ,J -DBFOX/Ph ligand, NiBr2, and 2 equimolar amounts of AgC104 in dichloromethane, the reaction of 3-crotonoyl-2-oxazolidinone with N-benzylidenemethylamine N-oxide at room temperature produced the 3,4-trans-isoxazolidine (63% yield) in near perfect endo selectivity (endo/exo=99 l) and enantioselectivity in favor for the 3S,4J ,5S enantiomer (>99% ee for the endo isomer. Scheme 7.21). The copper(II) perchlorate complex showed no catalytic activity, however, whereas the ytterbium(III) triflate complex led to the formation of racemic cycloadducts. [Pg.268]

Rare-earth-metal triflates are efficient catalysts in Diels-Alder reactions, and Sc(OTf)3 is clearly more effective than Ln(OTf)3 as a catalyst.45,53-55 In the presence of 10mol.% Y(OTf)3 or Yb(OTf)3, only a trace amount of the adduct was obtained in the Diels-Alder reaction of methyl vinyl ketone (MVK) with isoprene. In contrast, the reaction proceeded smoothly to give the adduct in 91% yield in the presence of 10mol.% Sc(OTf)3 (Scheme 13).45 Sc(OTf)3 has also proved to be an efficient catalyst for the Diels-Alder reaction of imines (aza Diels-Alder reactions).56,57... [Pg.404]

New electrophilic substitution reaction methods for the preparation of dipyrromethanes have been reported. The condensation of IV-methylpyrrole with benzaldehyde leading to the corresponding dipyrromethane was promoted by the addition of the organic catalyst, pyrrolidinium tetrafluoroborate <06T12375>. The reaction between pyrrole and N-tosyl imines promoted by metal triflates gave dipyrromethanes whereas tripyrromethane byproducts were not observed <06T10130>. [Pg.144]

Lewis acids as water-stable catalysts have been developed. Metal salts, such as rare earth metal triflates, can be used in aldol reactions of aldehydes with silyl enolates in aqueous media. These salts can be recovered after the reactions and reused. Furthermore, surfactant-aided Lewis acid catalysis, which can be used for aldol reactions in water without using any organic solvents, has been also developed. These reaction systems have been applied successfully to catalytic asymmetric aldol reactions in aqueous media. In addition, the surfactant-aided Lewis acid catalysis for Mannich-type reactions in water has been disclosed. These investigations are expected to contribute to the decrease of the use of harmful organic solvents in chemical processes, leading to environmentally friendly green chemistry. [Pg.4]

Allenyltrimethylsilanes add to ethyl glyoxalate in the presence of a chiral pybox scandium triflate catalyst to afford highly enantioenriched homopropargylic alcohols or dihydrofurans, depending on the nature of the silyl substituent (Tables 9.39 and 9.40) [62]. The trimethylsilyl-substituted silanes give rise to the alcohol products whereas the bulkier t-butyldiphenylsilyl (DPS)-substituted silanes yield only the [3 + 2] cycloadducts. A bidentate complex of the glyoxalate with the scandium metal center in which the aldehyde carbonyl adopts an axial orientation accounts for the observed facial preference ofboth additions. [Pg.538]

Metal triflate Lewis acids can also be dispersed in ionic liquids for catalytic applications. Acetylation of alcohols with acetic anhydride and acetic acid has been reported with Cu(OTf)2, Yb(OTf)3, Sc(OTf)3, In(OTf)3, HfClq. (THF)2, and InCl3 in ionic liquids that consist of [BMIM] and the anions BF4, PF, or SbF 166). With lmol% acid, all the catalysts in [BMIMJPF showed >99% acetylation products in acetyl anhydride acetylation of benzyl alcohol. Sc(OTf)3 showed the best yield with recycling, with a 25% drop in yield after two cycles. A relatively long reaction period was needed to obtain a high yield (95-98%) for the acetylation of benzyl alcohol with acetic acid, indicating that the activities of the catalysts were... [Pg.193]

First developments in the Friedel-Crafts alkylation were concentrated on the use of stoichiometric amounts of Lewis acids, such as A1C13, BF3 or TiCl4, to produce stoichiometric amounts of salt by-products [5-9]. However, in recent years more and more catalytic methods have been developed. In particular, rare earth metal triflates, including Sc(OTf)3, La(OTf)3 and Yb(OTf)3, have been extensively used as Lewis acid catalysts in various C-C and C-X bond forming reactions [10-13], Despite the benefit of their versatility for organic synthesis, these Lewis acids possess major drawbacks. They are expensive, rather toxic [14], and air- and moisture-sensitive. [Pg.116]

On the basis of these initial results, various rare earth metal triflates, including Sc(OTf)3, Hf(OTf)4 and Yb(OTf)3 were applied as catalysts [27-29]. Recently Beller and coworkers developed efficient Friedel-Crafts alkylations with catalytic amounts of Rh, W, Pd, Pt and Ir complexes [30] or FeCl3 [31-34] as Lewis acid catalysts. However, in the latter cases high catalyst loadings had to be applied. To overcome these major drawbacks, we decided to develop a Bi(III)-catalyzed Friedel-Crafts alkylation of arenes with benzyl alcohols. Although bismuth-catalyzed Friedel-Crafts acylations were well known at this time, Friedel-Crafts alkylations using benzyl alcohols had not been reported. [Pg.119]

This first example of a Bi(OTf)3-catalyzed Friedel-Crafts alkylation originated in the following procedures, including benzylations of 2,4-pentanediones or hydroarylation and hydroalkylation reactions. A related procedure was simultaneously developed by Bonrath et al. [39]. The authors utilized Bi(OTf)3 in the synthesis of (all-rac)-a-tocopherol (Vitamin E) [39], Besides rare earth metal triflates, such as Ga(OTf)3, Hf(OTf)3, Sc(OTf)3 and Gd(OTf)3, Bi(OTf)3 was shown to be the most efficient catalyst for the Friedel-Crafts-type reaction between trimethylhydroquinone acetate 10b and isophytols 11a, b. With only 0.02 mol% Bi(OTf)3 (substrate to catalyst ratio 5,000 1) the desired a-tocopherols 12a and 12b were isolated in excellent yields (Scheme 10). [Pg.123]

The yield of the Mannich product was only 16%, because of competing formation of C4H8NCH2NC4H8. The chemoselectivity of the Mannich reaction can, however, be significantly increased by in situ generation of the iminium ion using aminomethyl ethers in combination with rare earth metal triflates and AlLibis(bi-naphthoxide) (ALB) 2 (Fig. 1) as the catalyst (Eq. 2). [Pg.360]

Unfortunately ZnCl2/Si02 cannot be recycled after reaction, due to irreversible catalyst deactivation which is believed to occur via hydrolysis of the Zn-Cl bond. Indeed chlorinated campholenic aldehyde was observed to form during the reaction, which would occur through reaction with HC1 from hydrolysed ZnCl2. It was anticipated that the enhanced water stability of the metal triflate would thus be advantageous for this reaction. [Pg.258]

Several metal triflate salts have been tested in the Friedel-Crafts acylation of anisole with benzoyl chloride in [C4Ciim][BF4]. At a reaction temperature of 80°C and catalyst loadings of 10 mol%, all salts led to 100% conversion with reaction rates decreasing in the order Cu(OTf)2 > Zn(OTf)2 > Sn(OTf)2 Sc(OTf)3, see Scheme 9.22.[92]... [Pg.203]

Numerous transition and rare earth metal triflates were screened as catalysts for the alkenylation of arenes with alkynes, a transformation that can be performed only with difficulty in conventional solvents, see Scheme 9.23. Particularly with electron deficient alkynes such as p-trifluormethylphenylacetylene and />-chlorophenylacetylene the presence of an ionic liquid was found to be mandatory to observe any catalysis. Highest activity was obtained with Hf(OTf)3, In(OTf)3 and Sc(OTf)3 and the reaction proceeded smoothly, even at relatively low catalyst loadings. It is proposed... [Pg.204]

Labeling experiments performed by Carreira et al. showed that other metal triflates and the related Lewis acids, Yb(OTf)3, Sn(OTf)2, Zn(OTf)2, and LiC104 induced silicon group-transfer processes rather than not metal-catalyzed processes [28]. These observations confirm that 1 is a true Lewis acid catalyst, although the situation would be more complicated when Lewis bases trapping trialkylsilyl groups are contained in the system. [Pg.361]

Rare earth metal triflates are recognized as a very efficient Lewis acid catalysts of several reactions including the aldol reaction, the Michael reaction, allylation, the Diels-Alder reaction, the Friedel-Crafts reaction, and glycosylation [110]. A polymer-sup-ported scandium catalyst has been developed and used for quinoline library synthesis (Sch. 8) [111], because lanthanide triflates were known to be effective in the synthesis of quinolines from A-arylimines [112,113]. This catalyst (103) was readily prepared from poly(acrylonitrile) 100 by chemical modification. A variety of combinations of aldehydes, amines, and olefins are possible in this reaction. Use of the polymer-supported catalyst has several advantages in quinoline library construction. [Pg.975]

Free-ion attack is more likely for sterically hindered R. The ion CH3CO has been detected (by IR spectroscopy) in the liquid complex between acetyl chloride and aluminum chloride, and in polar solvents, such as nitrobenzene but in nonpolar solvents, such as chloroform, only the complex and not the free ion is present." In any event, 1 equivalent of catalyst certainly remains complexed to the product at the end of the reaction. When the reaction is performed with RCO+SbFg, no catalyst is required and the free ion" " (or ion pair) is undoubtedly the attacking entity." The use of LiC104 on the metal triflate-catalyzed Friedel-Crafts acylation of methoxy-naphthalene derivatives has been examined, and the presence of the lithium salt leads to acylation in the ring containing the methoxy unit, whereas reaction occurs in the other ring in the absence of lithium salts." Note that lithium perchlorate forms a complex with acetic anhydride, which can be used for the Friedel-Crafts acetylation of activated aromatic compounds." ... [Pg.723]

Although the element scandium is in group 3 and lies above La and Y, its use in organic synthesis is rather limited in spite of its promising properties. In the course of our investigations to search for novel Lewis acid catalysts, especially metal triflates, we focused on the element scandium. [Pg.542]

Various metal salts such as rare earth metal triflates and copper triflate can function as Lewis acids in aqueous media. They can effectively activate aldehydes and imines in the presence of water molecules, and the first successful examples of Lewis acid-catalyzed reactions in aqueous solution have been demonstrated. Water-soluble aldehydes such as foimaldehyde could be employed directly in these reactions. Moreover, the catalysts could be easily recovered after the reactions were completed and could be reused. There are many kinds of Lewis acid-promoted reactions in industrial chemistry, and treatment of large amounts of the acids left over after the reactions have induced some severe environmental problems. From the standpoints of their catalytic use and reusability, the Lewis acids described in this chapter are expected to be new types of catalysts providing some solutions for these problems. [Pg.559]

Rare-earth metal triflates as catalysts in reactions with formation and participation of heterocycles 02CRV2227. [Pg.150]

Very recently, a similar bifunctional catalyst system (metal triflates and cinchona alkaloid) was successfully applied by Peters and coworkers for the synthesis of (3-sultones (Scheme 4.17) [40] and chiral a,P-unsaturated 8-lactones [41]. [Pg.88]


See other pages where Metal triflates catalysts is mentioned: [Pg.59]    [Pg.50]    [Pg.237]    [Pg.254]    [Pg.59]    [Pg.50]    [Pg.237]    [Pg.254]    [Pg.27]    [Pg.278]    [Pg.205]    [Pg.4]    [Pg.53]    [Pg.529]    [Pg.126]    [Pg.473]    [Pg.473]    [Pg.181]    [Pg.320]    [Pg.148]    [Pg.260]    [Pg.622]    [Pg.473]    [Pg.461]    [Pg.180]    [Pg.295]   
See also in sourсe #XX -- [ Pg.222 , Pg.223 , Pg.226 , Pg.231 , Pg.234 , Pg.235 ]




SEARCH



Metal triflates

Triflate catalysts, molecular metal

Triflate catalysts, molecular metal reactions

© 2024 chempedia.info