Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic asymmetric aldol reaction

Organic-Base Catalyzed. Asymmetric direct aldol reactions have received considerable attention recently (Eq. 8.98).251 Direct asymmetric catalytic aldol reactions have been successfully performed using aldehydes and unmodified ketones together with chiral cyclic secondary amines as catalysts.252 L-proline and 5,5-dimethylthiazolidinium-4-carboxylate (DMTC) were found to be the most powerful amino acid catalysts for the reaction of both acyclic and cyclic ketones as aldol donors with aromatic and aliphatic aldehydes to afford the corresponding... [Pg.268]

The asymmetric catalytic aldol reaction of a silyl enol ether can be performed in a double and two-directional fashion to give the 1 2 adduct in the silyl enol ether form with >99% ee and 99% de in 77% isolated yield (Scheme 8C.25) [59]. The present catalytic asymmetric aldol reaction is characterized by a kinetic amplification phenomenon of the product chirality, going from the one-directional aldol intermediate to the two-directional product (Figure 8C.8). Further transformation of the pseudo C2 symmetric product, while still being protected as the silyl enol ether, leads to a potent analog of an HIV protease inhibitor. [Pg.562]

It is worth noting that, in a similar manner to enzymatic conversions with type I or II aldolases, a direct asymmetric aldol reaction was achieved when L-proline was used as catalyst. Accordingly, the use of enol derivatives of the ketone component is not necessary, i.e. ketones (acting as donors) can be used directly without previous modification [72]. So far, most asymmetric catalytic aldol reactions with... [Pg.147]

In addition to the many intermolecular asymmetric (organo)catalytic aldol reactions, analogous intramolecular syntheses are also possible. In this connection it is worthy of note that the first example of an asymmetric catalytic aldol reaction was an intramolecular reaction using an organic molecule, L-proline, as chiral catalyst. This reaction - which will be discussed in more detail below - is the so-called Hajos-Parrish-Eder-Sauer-Wiechert reaction [97-101], which was discovered as early as the beginning of the 1970s. [Pg.166]

The intramolecular aldol reaction of triketones with asymmetric desymmetrization has been known for a long time. When Eder, Sauer, and Wiechert [97, 98], and in parallel Hajos and Parrish [99-101] reported this reaction in the early 1970s it was the first example of an asymmetric catalytic aldol reaction, and one of the first examples of an organocatalytic asymmetric synthesis [104]. [Pg.168]

The asymmetric catalytic aldol reaction of silyl allenolates ICH=C=CR2OSiMe3 with aldehydes R CHO has been achieved by Li et al. by using N-C3F7CO oxazaborolidine as the catalyst [43], The fluoroacyl group of the catalyst was found to be crucial for control of enantioselectivity. The reaction provides the first enantioselective approach to / -halo Baylis-Hillman-type adducts. [Pg.174]

The capability of L-proline - as a simple amino acid from the chiral pool - to act like an enzyme has been shown by List, Lemer und Barbas III [4] for one of the most important organic asymmetric transformations, namely the catalytic aldol reaction [5]. In addition, all the above-mentioned requirements have been fulfilled. In the described experiments the conversion of acetone with an aldehyde resulted in the formation of the desired aldol products in satisfying to very good yields and with enantioselectivities of up to 96% ee (Scheme 1) [4], It is noteworthy that, in a similar manner to enzymatic conversions with aldolases of type I or II, a direct asymmetric aldol reaction was achieved when using L-proline as a catalyst. Accordingly the use of enol derivatives of the ketone component is not necessary, that is, ketones (acting as donors) can be used directly without previous modification [6]. So far, most of the asymmetric catalytic aldol reactions with synthetic catalysts require the utilization of enol derivatives [5]. The first direct catalytic asymmetric aldol reaction in the presence of a chiral heterobimetallic catalyst has recently been reported by the Shibasaki group [7]. [Pg.179]

For a review about the asymmetric catalytic aldol reaction, see a) H. Groger, E. M. Vogl, M. Shibasaki, Chem. Eur. J. 1998,... [Pg.186]

Sato/Kaneko [104] and Carreira [105] have independently employed acetoacetate-derived O-silyl dienolates as Si-substituted nucleophiles in asymmetric catalytic aldol reactions. The aldol products, d-hydroxy-/3-ketoesters, and the derived syn- and anti-yS,d-diol esters are ubiquitous structural subunits in biologically active natural products such as the polyene macrolide antibiotics. These structural subunits are also found in chemotherapeutics, most notably compactin analogs [106] that have been studied as... [Pg.823]

Scandium trifiate was found to be an effective catalyst for the aldol reactions of silyl enol ethers with aldehydes in aqueous solvent/micellar systems (205). While the reactions proceeded sluggishly in water, remarkable enhancement of the reactivity was observed in the presence of a small amount of a surfactant (206). In related asymmetric version, scandium trifiate (Sc(OTf)3) catalyzed asymmetric aldol of formaldehyde (hydroxymethylation) could be conducted with highly enantioselectively in the presence of chiral bipyridine based ligand (Scheme 53) (207). A significant progress was also made by Feng and co-workers recently a C-2-symmetric iV,iV -dioxide-Sc(III) complex has been developed to asymmetric catalytic aldol reaction of a-ketoesters and diazoacetate... [Pg.2232]

The topological relation in the chiral substrate changes along the reaction coordinate diastereotopy of protons on the a-methylene group transforms into diastereotopy of faces around the planar C=C bond in enol. A similar consideration is valid for the asymmetric catalytic aldol reaction with prochiral substrates enantiotopicity of hydrogen atoms transforms into enantiotopicity of faces around the planar C=C bond in enolate. [Pg.75]

Scheme 2.16 Synthesis of (-)-massoialactone by using an asymmetric catalytic aldol reaction. Scheme 2.16 Synthesis of (-)-massoialactone by using an asymmetric catalytic aldol reaction.
Mukaiyama Aldol and Related Processes. The Carreira group has developed an asymmetric catalytic aldol reaction that involves addition of a silyl dienolate to an aldehyde partner in the presence of a chiral catalyst generated in situ from (S)-Tol-BINAP, Cu(OTf)2, and TBAT, e.g., eq... [Pg.480]

Asymmetric catalytic aldol reactions with fluorinated aromatic aldehydes and ketones (a) Soloshonok, V. A. and Hayashi, T. Tetrahedron Lett. [Pg.266]

One of the earliest examples of an asymmetric catalytic aldol reaction in which the enolate component is generated in situ in the presence of an aldehyde is to be found in the pioneering work by Hayashi and Ito. In 1986, these investigators reported enantioselective addition reactions of a-isocyanoacetate to aldehydes catalyzed by chiral gold complexes (Scheme 4.23 see also Scheme 4.3) [18, 40). Several features of the catalyst and the process are important to note (1) the isocyanoester is a C-H acid (pfC 13), which is significantly further acidified upon its chelation to the Au center, (2) the presence of the tertiary amine in the ligand likely assists the enolization event, and (3) turnover of the... [Pg.124]

In 2000, Morken et al. reported the first examples of catalytic asymmetric reductive aldol reactions [21]. Using Rh(BINAP) (5mol%) as catalyst and Et2MeSiH as reductant, the syn-selective (1.7 1) coupling of benzalde-hyde and methyl acrylate produced the diastereomers 35-syn and 35-anti in 91% ee and 88% ee, respectively. Using phenyl acrylate as the nucleophilic partner, a favorable yield of 72% was obtained for the aldol product 36 (Scheme 12). Several aldehydes were examined, which exhibit higher levels of syn-selectivity. Expanding the scope of substrates and acrylates under... [Pg.121]

Heterobimetallic asymmetric complexes contain both Bronsted basic and Lewis acidic functionalities. These complexes have been developed by Shibasaki and coworkers and have proved to be highly efficient catalysts for many types of asymmetric reactions, including catalytic asymmetric nitro-aldol reaction (see Section 3.3) and Michael reaction. They have reported that the multifunctional catalyst (f )-LPB [LaK3tris(f )-binaphthoxide] controls the Michael addition of nitromethane to chalcones with >95% ee (Eq. 4.140).205... [Pg.119]

Pro-chiral pyridine A-oxides have also been used as substrates in asymmetric processes. Jprgensen and co-workers explored the catalytic asymmetric Mukaiyama aldol reaction between ketene silyl acetals 61 and pyridine A-oxide carboxaldehydes 62 <06CEJ3472>. The process is catalyzed by a copper(II)-bis(oxazoline) complex 63 which gave good yields and diastereoselectivities with up to 99% enantiomeric excess. [Pg.324]

Shibasaki et al. also developed catalytic reactions of copper, some of which can be applied to catalytic asymmetric reactions. Catalytic aldol reactions of silicon enolates to ketones proceed using catalytic amounts of CuF (2.5 mol%) and a stoichiometric amount of (EtO)3SiF (120 mol%) (Scheme 104).500 Enantioselective alkenylation catalyzed by a complex derived from CuF and a chiral diphosphine ligand 237 is shown in Scheme 105.501 Catalytic cyanomethyla-tion by using TMSCH2CN was also reported, as shown in Scheme 106.502... [Pg.475]

Studies of catalytic asymmetric Mukaiyama aldol reactions were initiated in the early 1990s. Until recently, however, there have been few reports of direct catalytic asymmetric aldol reactions [1]. Several groups have reported metallic and non-metallic catalysts for direct aldol reactions. In general, a metallic catalysis involves a synergistic function of the Bronsted basic and the Lewis acidic moieties in the catalyst (Scheme 2). The Bronsted basic moiety abstracts an a-pro-ton of the ketone to generate an enolate (6), and the Lewis acidic moiety activates the aldehyde (3). [Pg.136]

Keck [63] and Carreira [64] have independently reported catalytic asymmetric Mukaiyama aldol reactions. Keck et al. also reported the aldol reaction of an a-benzyloxy aldehyde with a Danishefsky s diene. The aldol product was transformed to the corresponding HDA-type product through acid-catalyzed cyclization. In these reactions, the catalyst that is claimed to... [Pg.563]

Aldol reactions using phosphoramides as organocatalysts The organic base-catalyzed asymmetric intermolecular aldol reaction with ketone-derived donors can be successfully applied to the construction of aldol products with two stereogenic centers [82-86]. Trichlorosilyl enolates of type 51 have been used as nucleophiles. Such enolates are strongly activated ketone derivatives and react spontaneously with several aldehydes at —80 °C. A first important result was that in the aldol reaction of 51 catalytic amounts of HMPA led to acceleration of the rate of reaction. After screening several optically active phosphoramides as catalysts in a model reaction the aldol product anti-53 was obtained with a diastereomeric... [Pg.154]

The organocatalytic asymmetric intramolecular aldol reaction has also been used in the synthesis of a gibbane framework [117]. The proline-catalyzed aldol cycliza-tion of the triketone 104 into the tricyclic system 106 proceeds via the unstable ketol 105 (Scheme 6.47). For this reaction, which occurred at room temperature, a catalytic amount (10 mol%) of L-proline was used. The enone 106 was furnished in 92% yield and a single recrystallization resulted in an enantiomerically pure sample of 106. This aldol product 106 served as a useful intermediate in the synthesis of the desired gibbane framework. [Pg.172]

The asymmetric catalytic nitroaldol reaction, also known as the asymmetric Henry reaction, is another example of an aldol-related synthesis of high general interest. In this reaction nitromethane (or a related nitroalkane) reacts in the presence of a chiral catalyst with an aldehyde, forming optically active / -nitro alcohols [122], The / -nitro alcohols are valuable intermediates in the synthesis of a broad variety of chiral building blocks, e.g. / -amino alcohols. A highly efficient asymmetric catalytic nitroaldol reaction has been developed by the Shibasaki group, who used multifunctional lanthanoid-based complexes as chiral catalysts [122-125],... [Pg.176]

As discussed in Section III J, in general, catalytic asymmetric aldol reactions have been studied using enol silyl ethers, enol methyl ethers, or ketene silyl acetals as a starting material. So far several types of chiral catalysis have been reported.75-85 The chiral lanthanoid complex prepared from Ln(OTf)3 and a chiral sulfonamide ligand was effective in promoting an asymmetric Mukaiyama aldol reaction with a ketene silyl acetal.86 The preparation of the catalyst and a representative reaction are shown in Figure 45. [Pg.247]

Figure 45. Catalytic, asymmetric Mukaiyama aldol reaction promoted by die chiral Yb complex. Figure 45. Catalytic, asymmetric Mukaiyama aldol reaction promoted by die chiral Yb complex.
Benito Alcaide, Pedro Almendros The Direct Catalytic Asymmetric Cross-Aldol Reaction of Aldehydes, Angew. Chem. 115(8), 884-886 (2003), Angew. Chem. Int. Ed. 42(8), 858-860 (2003)... [Pg.190]

The silatropic ene pathway, i.e. direct silyl transfer from an enol silyl ether to an aldehyde, might be a possible mechanism in the Mukaiyama aldol-type reaction. Indeed, ab initio calculations show the silatropic ene pathway, involving the cyclic (boat and chair) transition states for the BHs-promoted aldol reaction of the trihydro-silyl enol ether derived from acetaldehyde with formaldehyde, to be favored [94], We recently reported the possible intervention of a silatropic ene pathway in the asymmetric catalytic aldol-type reaction of silyl enol ethers of thioesters [95]. The chloro and amino compounds thus obtained are useful intermediates in the synthesis of carnitine and GABOB (Sch. 34) [96]. [Pg.820]

Trimethylsilyloxy)furan can also be used as a functionalized silyl enol ether for the asymmetric catalytic aldol-type reaction. Figadere has reported that the reaction of aliphatic aldehydes with the siloxyfuran catalyzed by BINOL-derived titanium complex provides the diastereomeric mixtures with high enantioselectivity (Sch. 42) [107], The addition reaction proceeds at the y position of the siloxyfuran to give butenolides of biological and synthetic importance. [Pg.824]

Mukaiyama aldol reactions are useful means of constructing complex molecules for the total synthesis of natural products. Although catalytic asymmetric Mukaiyama aldol reactions have been achieved by use of a variety of chiral Lewis acids [42], no report of the use of chiral lanthanide catalysts was available until recently, despite the potency of these catalysts. Shibasaki and co-workers reported the first examples of chiral induction with chiral lanthanide complexes (Sch. 7) [43]. Catalysts prepared from lanthanide triflates and a chiral sulfonamide ligand afforded the corresponding aldol products in moderate enantiomeric excess (up to 49% ee). [Pg.931]


See other pages where Catalytic asymmetric aldol reaction is mentioned: [Pg.153]    [Pg.8]    [Pg.77]    [Pg.266]    [Pg.153]    [Pg.8]    [Pg.77]    [Pg.266]    [Pg.31]    [Pg.327]    [Pg.450]    [Pg.842]    [Pg.98]    [Pg.539]    [Pg.201]    [Pg.243]    [Pg.247]    [Pg.20]    [Pg.31]    [Pg.298]    [Pg.107]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Aldol catalytic

Aldol catalytic asymmetric

Aldol reaction, direct catalytic asymmetric

Asymmetric aldol reactions

Asymmetric catalytic

Catalytic Asymmetric Mukaiyama-Aldol Reactions

Catalytic aldol reaction

Shibasaki direct catalytic asymmetric aldol reaction

© 2024 chempedia.info