Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal, metals copper

Finally, other tests to control jet fuel corrosivity towards certain metals (copper and silver) are used in aviation. The corrosion test known as the copper strip (NF M 07-015) is conducted by immersion in a thermostatic bath at 100°C, under 7 bar pressure for two hours. The coloration should not exceed level 1 (light yellow) on a scale of reference. There is also the silver strip corrosion test (IP 227) required by British specifications (e.g., Rolls Royce) in conjunction with the use of special materials. The value obtained should be less than 1 after immersion at 50°C for four hours. [Pg.251]

Both the acid and its salts are powerful reducing agents. They reduce, for example, halogens to halides, and heavy metal cations to the metal. Copper(H) ion is reduced further to give copper(I) hydride, a red-brown precipitate ... [Pg.245]

It can be prepared by the reduction of hot concentrated sulphuric acid by a metal. Copper is used since it does not also liberate hydrogen from the acid ... [Pg.289]

Cobalt compounds have been in use for centuries, notably as pigments ( cobalt blue ) in glass and porcelain (a double silicate of cobalt and potassium) the metal itself has been produced on an industrial scale only during the twentieth century. Cobalt is relatively uncommon but widely distributed it occurs biologically in vitamin B12 (a complex of cobalt(III) in which the cobalt is bonded octahedrally to nitrogen atoms and the carbon atom of a CN group). In its ores, it is usually in combination with sulphur or arsenic, and other metals, notably copper and silver, are often present. Extraction is carried out by a process essentially similar to that used for iron, but is complicate because of the need to remove arsenic and other metals. [Pg.401]

The preparation of a series of transition metal complexes (Co. Ni. Pd. Pt, Ir. Au. Cu. Ag) with ambident anion (70) and phosphines as ligands has been reported recently (885). According to the infrared and NMR spectra the thiazoline-2-thione anion is bounded through the exocyclic sulfur atom to the metal. The copper and silver complexes have been found to be dimeric. [Pg.386]

In welding copper itself, the copper must be free of oxygen if the joint strength is required to be equal to that of the base metal. Copper alloys and can be welded with the shielded-metal arc, gas—metal arc, and gas—tungsten arc process. [Pg.347]

Common catalyst compositions contain oxides or ionic forms of platinum, nickel, copper, cobalt, or palladium which are often present as mixtures of more than one metal. Metal hydrides, such as lithium aluminum hydride [16853-85-3] or sodium borohydride [16940-66-2] can also be used to reduce aldehydes. Depending on additional functionahties that may be present in the aldehyde molecule, specialized reducing reagents such as trimethoxyalurninum hydride or alkylboranes (less reactive and more selective) may be used. Other less industrially significant reduction procedures such as the Clemmensen reduction or the modified Wolff-Kishner reduction exist as well. [Pg.470]

Analysis of Trace or Minor Components. Minor or trace components may have a significant impact on quaHty of fats and oils (94). Metals, for example, can cataly2e the oxidative degradation of unsaturated oils which results in off-flavors, odors, and polymeri2ation. A large number of techniques such as wet chemical analysis, atomic absorption, atomic emission, and polarography are available for analysis of metals. Heavy metals, iron, copper, nickel, and chromium are elements that have received the most attention. Phosphoms may also be detectable and is a measure of phosphoHpids and phosphoms-containing acids or salts. [Pg.134]

Open-Arc Furnaces. Most of the open-arc furnaces are used in melting and refining operations for steel and iron (Fig. 1). Although most furnaces have three electrodes and operate utilizing three-phase a-c power to be compatible with power transmission systems, d-c furnaces are becoming more common. Open-arc furnaces are also used in melting operations for nonferrous metals (particularly copper), slag, refractories, and other less volatile materials. [Pg.120]

In the United States, about 90% of gold production originates from ores and placer deposits. The remainder is recovered primarily as a by-product of the refining of base metals, chiefly copper. The principal gold producing states are Nevada (60%) and Califomia (10%) followed by Montana, Utah, S. Dakota, Washington, Colorado, Alaska, Idaho, Arizona, and New Mexico (7). [Pg.380]

Hydrocarbon, typically natural gas, is fed into the reactor to intersect with an electric arc stmck between a graphite cathode and a metal (copper) anode. The arc temperatures are in the vicinity of 20,000 K inducing a net reaction temperature of about 1500°C. Residence time is a few milliseconds before the reaction temperature is drastically reduced by quenching with water. Just under 11 kWh of energy is required per kg of acetylene produced. Low reactor pressure favors acetylene yield and the geometry of the anode tube affects the stabiUty of the arc. The maximum theoretical concentration of acetylene in the cracked gas is 25% (75% hydrogen). The optimum obtained under laboratory conditions was 18.5 vol % with an energy expenditure of 13.5 kWh/kg (4). [Pg.384]

Building Wires. These wires conduct electricity at relatively low voltages (eg, 110 V and 220 V). Typically they contain a metallic conductor (copper or aluminum) that is insulated with polymeric compounds based on polyethylene or PVC which are appHed over a conductor using an extmder. [Pg.323]

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

Metal Copper Nickel Lead Zinc Silver... [Pg.159]

Some copper oxide is formed which then reacts with the remaining sulfide to form metallic copper ... [Pg.167]

Eig. 11. Conductivity of A, silver semirefractory compositions and B, soHd-solution alloys of the same metals. Copper gives 100% lACS (International... [Pg.190]

Nickel also is deterrnined by a volumetric method employing ethylenediaminetetraacetic acid as a titrant. Inductively coupled plasma (ICP) is preferred to determine very low nickel values (see Trace AND RESIDUE ANALYSIS). The classical gravimetric method employing dimethylglyoxime to precipitate nickel as a red complex is used as a precise analytical technique (122). A colorimetric method employing dimethylglyoxime also is available. The classical method of electro deposition is a commonly employed technique to separate nickel in the presence of other metals, notably copper (qv). It is also used to estabhsh caUbration criteria for the spectrophotometric methods. X-ray diffraction often is used to identify nickel in crystalline form. [Pg.13]

In appUcations in which electrical conductivity is required, metals, copper, tungsten, molybdenum, and Kovar [12606-16-5] are the preferred chip-carrier materials. Metals have exceUent thermal conductivities. Tables 2 and 3 Ust the various materials used for substrates, along with their mechanical, electrical, and thermal properties. [Pg.526]

Compounds containing such metals as copper, barium, lead, molybdenum, and nickel generally are not used in processing solutions. However, trace quantities of certain metal dopants occasionally are used to impart desired soHd-state and photographic properties to emulsion grains. Because of its... [Pg.458]

Metal-free copper phthalocyanine blue, ie. Pigment Blue 16 [574-93-6] is one of the eadiest forms of phthalocyanine. Environmental concerns about copper in pigments tended to increase the use of metal-free copper phthalocyanine, but certain shortcomings (greenish hue, lack of stabiHty in aromatic solvents) allowed only specialty uses (109). The stabiH2ed a-NC-type is used in certain automotive coatings. [Pg.506]

The first equation is an example of hydrolysis and is commonly referred to as chemical precipitation. The separation is effective because of the differences in solubiUty products of the copper(II) and iron(III) hydroxides. The second equation is known as reductive precipitation and is an example of an electrochemical reaction. The use of more electropositive metals to effect reductive precipitation is known as cementation. Precipitation is used to separate impurities from a metal in solution such as iron from copper (eq. 1), or it can be used to remove the primary metal, copper, from solution (eq. 2). Precipitation is commonly practiced for the separation of small quantities of metals from large volumes of water, such as from industrial waste processes. [Pg.562]

Grain size varies widely, from 10 to 5000 nm. The grain size of fine-grained or banded deposits is usually 10—100 nm. Some metals, notably copper, nickel, cobalt and gold, can be deposited in all four types of grain stmcture, depending on the solution composition and plating conditions. [Pg.49]

Carbonyl sulfide reacts with chlorine forming phosgene (qv) and sulfur dichloride [10545-99-0] and with ammonia forming urea and ammonium sulfide [12135-76-1]. Carbonyl sulfide attacks metals, eg, copper, ia the presence of moisture and is thought to be iavolved ia atmospheric sulfur corrosion (27,28). Its presence ia propane gas at levels above a few ppm may cause the gas to fail the copper-corrosion test. [Pg.130]


See other pages where Metal, metals copper is mentioned: [Pg.265]    [Pg.158]    [Pg.178]    [Pg.439]    [Pg.440]    [Pg.2750]    [Pg.245]    [Pg.473]    [Pg.486]    [Pg.256]    [Pg.446]    [Pg.510]    [Pg.11]    [Pg.60]    [Pg.514]    [Pg.16]    [Pg.155]    [Pg.266]    [Pg.31]    [Pg.134]    [Pg.167]    [Pg.167]    [Pg.187]    [Pg.196]    [Pg.358]    [Pg.107]    [Pg.558]    [Pg.26]   
See also in sourсe #XX -- [ Pg.124 , Pg.145 , Pg.175 , Pg.176 , Pg.177 , Pg.178 , Pg.179 , Pg.180 , Pg.181 , Pg.182 , Pg.183 , Pg.184 , Pg.185 , Pg.186 , Pg.187 , Pg.202 , Pg.262 , Pg.264 ]




SEARCH



Copper metalization

Copper metallization

Metals copper

© 2024 chempedia.info