Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal carbonyls metallic sodium, reaction with

The phase-transfer catalysed reaction of nickel tetracarbonyl with sodium hydroxide under carbon monoxide produces the nickel carbonyl dianions, Ni,(CO) 2- and Ni6(CO)162, which convert allyl chloride into a mixture of but-3-enoic and but-2-enoic acids [18]. However, in view of the high toxicity of the volatile nickel tetracarbonyl, the use of the nickel cyanide as a precursor for the carbonyl complexes is preferred. Pretreatment of the cyanide with carbon monoxide under basic conditions is thought to produce the tricarbonylnickel cyanide anion [19], as the active metal catalyst. Reaction with allyl halides, in a manner analogous to that outlined for the preparation of the arylacetic acids, produces the butenoic acids (Table 8.7). [Pg.374]

The methods of preparation of ferrocene have been reviewed by Pauson and by Fischer. Ferrocene has been made by the reaction of ferric chloride with cyclopentadienylmagnesium bromide, by the direct thermal reaction of cyclopentadiene with iron metal, by the direct interaction of cyclopentadiene with iron carbonyl, by the reaction of ferrous chloride with cyclopentadiene in the presence of organic bases such as diethyl-amine, by the reaction of ferrous chloride with sodium cyclo-[lentadienide in liquid ammonia, and from cyclopentadiene and... [Pg.33]

Two classes of charged radicals derived from ketones have been well studied. Ketyls are radical anions formed by one-electron reduction of carbonyl compounds. The formation of the benzophenone radical anion by reduction with sodium metal is an example. This radical anion is deep blue in color and is veiy reactive toward both oxygen and protons. Many detailed studies on the structure and spectral properties of this and related radical anions have been carried out. A common chemical reaction of the ketyl radicals is coupling to form a diamagnetic dianion. This occurs reversibly for simple aromatic ketyls. The dimerization is promoted by protonation of one or both of the ketyls because the electrostatic repulsion is then removed. The coupling process leads to reductive dimerization of carbonyl compounds, a reaction that will be discussed in detail in Section 5.5.3 of Part B. [Pg.681]

The site of reaction on an unsaturated organometallic molecule is not restricted to the most probable position of the metallic atom or cation or to a position corresponding to any one resonance structure of the anion. This has been discussed in a previous section with reference to the special case of reaction with a proton. Although the multiple reactivity is particularly noticeable in the case of derivatives of carbonyl compounds, it is not entirely lacking even in the case of the derivatives of unsaturated hydrocarbons. Triphenylmethyl sodium reacts with triphenylsilyl chloride to give not only the substance related to hexaphenylethane but also a substance related to Chichi-babin s hydrocarbon.401 It will be recalled that both the triphenyl-carbonium ion and triphenylmethyl radical did the same sort of thing. [Pg.214]

The importance of reactions with complex, metal hydrides in carbohydrate chemistry is well documented by a vast number of publications that deal mainly with reduction of carbonyl groups, N- and O-acyl functions, lactones, azides, and epoxides, as well as with reactions of sulfonic esters. With rare exceptions, lithium aluminum hydride and lithium, sodium, or potassium borohydride are the... [Pg.216]

The results from our work on the reaction of propylene oxide with cobalt carbonyl and base in methanol are given in Table VIII. Several base/metal oxide combinations were evaluated under mild reaction conditions. The difference in activity between the bases was not as pronounced as that observed in the reaction with benzyl halides with the exception of potassium methoxide which, when used alone, gave exclusively the hydroxy ether resulting from methoxide addition to the epoxide ring. However, the activity of sodium... [Pg.151]

Reaction XLIV. (b) Condensation of Alkyl and Aryl Halogen Compounds with the Sodio- and other Metallo-derivatives of Ethyl Aceto-acetate and its Homolognes. (A., 186, 214 201, 143 213, 143.)—Like malonic ester, acetoacetic ester contains two 1 3-carbonyl groups with a methylene group in position 2. It is only to be expected then that it yields with metallic sodium or sodium alcoholate sodio-derivatives from which mono- and di-, alkyl and aryl homologues can be obtained by treatment with a suitable halide, including halogen esters. Acetoacetic acid... [Pg.137]

The amide ions are powerful bases and may be used (i) to dehydrohalogenate halo-compounds to alkenes and alkynes, and (ii) to generate reactive anions from terminal acetylenes, and compounds having reactive a-hydrogens (e.g. carbonyl compounds, nitriles, 2-alkylpyridines, etc.) these anions may then be used in a variety of synthetic procedures, e.g. alkylations, reactions with carbonyl components, etc. A further use of the metal amides in liquid ammonia is the formation of other important bases such as sodium triphenylmethide (from sodamide and triphenylmethane). [Pg.117]

The reverse of the acid cleavage of metal-bound ester groups is the nucleophilic addition of alkoxide ions to cationic carbonyl complexes9. These reactions have been carried out with the optically active salts 3 and sodium methoxide7 8 [Eq. (4)] as well as sodium ethoxide12. ... [Pg.70]

Since the l,2-bis(dichlorophosphino)alkanes made by this new process are reactive intermediates they have a variety of potential uses. Compound 1 has been converted to the 1,2-bis (dime thoxyphosphino)ethane and used for making metal carbonyl complexes . There also is a report on the conversion to 1,2-bis-(dimethylphosphino)ethane and 1,2-bis(diethylphosphino)ethaneZ. The tetra-sodium salt of ethylenediphosphinetetraacetic acid has been made using intermediate lL2. The reactions with phenols and cyclic aliphatic alcohols also have been reported—. [Pg.336]

The diethyl ester of phenylphosphonous acid (diethoxyphenyl-phosphine) provides an easy pathway to relatively stable telrakis complexes of zero- and low-valent transition metals.1,2 Anhydrous metal halides serve as the metal source for the complexes, avoiding the necessity of inconvenient starting materials such as nickel carbonyl. The nickel(O) complex is formed by reaction with the phosphonite in ethanol with the addition of sodium tetrahydroborate, relatively stable dihydridoiron(l I) and hydridocobalt(I) complexes are obtained. [Pg.117]

Hence, the first clearcut evidence for the involvement of enol radical cations in ketone oxidation reactions was provided by Henry [109] and Littler [110,112]. From kinetic results and product studies it was concluded that in the oxidation of cyclohexanone using the outer-sphere one-electron oxidants, tris-substituted 2,2 -bipyridyl or 1,10-phenanthroline complexes of iron(III) and ruthenium(III) or sodium hexachloroiridate(IV) (IrCI), the cyclohexenol radical cation (65" ) is formed, which rapidly deprotonates to the a-carbonyl radical 66. An upper limit for the deuterium isotope effect in the oxidation step (k /kjy < 2) suggests that electron transfer from the enol to the metal complex occurs prior to the loss of the proton [109]. In the reaction with the ruthenium(III) salt, four main products were formed 2-hydroxycyclohexanone (67), cyclohexenone, cyclopen tanecarboxylic acid and 1,2-cyclohexanedione, whereas oxidation with IrCl afforded 2-chlorocyclohexanone in almost quantitative yield. Similarly, enol radical cations can be invoked in the oxidation reactions of aliphatic ketones with the substitution inert dodecatungstocobaltate(III), CoW,20 o complex [169]. Unfortunately, these results have never been linked to the general concept of inversion of stability order of enol/ketone systems (Sect. 2) and thus have never received wide attention. [Pg.204]

A systematic study of the reductive alkylation of acetophenones revealed that the desired transformation (Scheme 30) required a careful selection of reagents and conditions. The best results were obtained from reduction by potassium in ammonia at -78 °C, with t-butyl alcohol as the proton source. Exchange of the potassium counterion of the enolate (152 M = K) for lithium then ensured regioselective alkylation at C-1 to give (153) in 80-90% yields (Scheme 30). Metals other than potassium as the reductant led to undesirable side reactions with the carbonyl group, which included simple reduction to the methylcar-binol and ethylbenzene (lithium or sodium), while the absence of a proton source or presence of a strong... [Pg.508]

Before the introduction of metal-ammonia solutions for the reduction of a,p-unsaturated carbonyl compounds,sodium, sodium amalgam, or zinc in protic media were most commonly employed for this purpose. Some early examples of their use include the conversion of carvone to dihydrocarvone with zinc in acid or alkaline medium, and of cholest-4-en-3-one to cholestanone with sodium in alcohol. These earlier methods are complicated by a variety of side reactions, such as over-reduction, dimerization, skeletal rearrangements, acid- or base-catalyzed isomerizations and aldol condensations, most of which can be significantly minimized by metal-ammonia reduction. [Pg.526]

In the reductive dimerization of methyl cinnamate to a cyclopentanone [Eq. (5)], similar yields are found at the cathode [42] and with metals (sodium, THE, and TBAI, —78°C) [40]. Because of the potential selective conversion at the electrode, halides can be reduced at the cathode to carbanions in the presence of carbonyl compounds, which are reduced at more cathodic potentials. This way labile carbanions can be obtained and reacted under conditions in which the same species generated by a metalorganic route would decompose. Eor example, trichlorobromoalkane can be cathodically converted in the presence of aldehydes to a dichloromethyl anion 0°C [route a, Eq. (6)] and be trapped to form a dichlorotetrahydrofuran, but for the metallorganic route [route b, Eq. (6)] a reaction temperature of — 110°C is necessary [43]. [Pg.212]

It was proposed that a Lewis acid lanthanum center controls the direction of the carbonyl function and activates the enone while the sodium alkoxide forms enolate intermediates and regenerates the catalyst by hydrogen abstraction (Scheme 6). Other Ln/alkali metal combinations, including La/Li, show negligible asymmetric induction, yet give almost racemic products in excellent yield. In contrast, alkali-metal free BINOL ester enolate complexes catalyze Michael reactions with high enantioselectivities, albeit at lower temperatures. [Pg.994]


See other pages where Metal carbonyls metallic sodium, reaction with is mentioned: [Pg.756]    [Pg.275]    [Pg.156]    [Pg.337]    [Pg.98]    [Pg.263]    [Pg.365]    [Pg.361]    [Pg.137]    [Pg.454]    [Pg.227]    [Pg.450]    [Pg.570]    [Pg.442]    [Pg.282]    [Pg.5]    [Pg.135]    [Pg.189]    [Pg.194]    [Pg.570]    [Pg.1984]    [Pg.3367]    [Pg.210]    [Pg.549]    [Pg.532]    [Pg.450]    [Pg.364]    [Pg.281]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Carbonylation with metal carbonyls

Carbonyls, metal Reactions

Metal carbonyls reaction with

Metal carbonyls sodium hydroxide, reaction with

Metal sodium

Reaction with sodium metal

Sodium metallation

Sodium reaction with

Sodium, metallic

© 2024 chempedia.info