Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal alkyls carbonation

Extensive studies of lithium surface chemistry have beeu carried out for more than three decades, and have enabled the mapping of a wide variety of surface reactions that occur in the most important families of solvents, salt anions and active atmospheric contaminants [30,31]. Based on these studies, it is possible to understand the surface reactions of other active metals in important polar aprotic electrolyte solutions. In each family of solvents there are dominant surface species that are formed on active metals metal oxides in ethers, metal carboxylates in esters and metal alkyl carbonates in alkyl carbonates. However, the situation on active metal surfaces in solutions is... [Pg.492]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

Dialkyl peroxydicarboaates are used primarily as free-radical iaitiators for viayl monomer po1ymeri2ations (18,208). Dialkyl peroxydicarboaate decompositioas are accelerated by certaia metals, coaceatrated sulfuric acid, and amines (44). Violent decompositions can occur with neat or highly concentrated peroxides. As with most peroxides, they Hberate iodine from acidified iodides. In the presence of copper ions and suitable substrates, dialkyl peroxydicarbonates have been used to synthesi2e alkyl carbonates (44) ... [Pg.124]

Stable transition-metal complexes may act as homogenous catalysts in alkene polymerization. The mechanism of so-called Ziegler-Natta catalysis involves a cationic metallocene (typically zirconocene) alkyl complex. An alkene coordinates to the complex and then inserts into the metal alkyl bond. This leads to a new metallocei e in which the polymer is extended by two carbons, i.e. [Pg.251]

Metal alkyl is liable to decompose with breaking of the carbon-carbon bond that is in )3-position relative to the C—Me bond ... [Pg.87]

For example, the reaction enthalpy for the reduction of PC proceeding at lithium amalgam to form propylene gas and lithium carbonate is estimated to be -I41kcal (molPC)-1 [149]. PC is reduced at noble-metal electrodes at potentials below 1.5 V vs. Li, and yields lithium alkyl carbonates when lithium salts are the supporting electrolytes. Reduction occurs at 0.7-0.8 V vs. Li with Bu4NC104as supporting electrolyte [150],... [Pg.479]

Eisch, Behrooz and Galle196 give compelling evidence for the intervention of radical species in the desulphonylation of certain acetylenic or aryl sulphones with metal alkyls having a lower oxidation potential at the anionic carbon. The primary evidence presented by these workers is that the reaction of 5-hexenylmagnesium chloride outlined in equation (85) gives a mixture of desulphonylation products, in accord with the known behaviour of the 5-hexenyl radical, in which the cyclopentylmethyl radical is also formed. [Pg.959]

Reactions of carbon subsulphide and of elementary phosphorus, sulphur and selenium with complexes of the platinum metals Sulphur dioxide insertion reactions of transition metal alkyls and related complexes... [Pg.517]

Leconte and Basset [161-166] proposed two other possible mechanisms (Scheme 39) the first one implies a 1,2 carbon-carbon activation which invokes the de-insertion of a methylidene fragment from a surface metal-alkyl species, and the second implies a 1,3 carbon-carbon bond activation in which the key steps are the formation of a dimetallacyle by y-H activation from a metal-alkyl followed by carbon-carbon bond cleavage via a concerted electron transfer. [Pg.196]

Palladium(II) complexes possessing bidentate ligands are known to efficiently catalyze the copolymerization of olefins with carbon monoxide to form polyketones.594-596 Sulfur dioxide is an attractive monomer for catalytic copolymerizations with olefins since S02, like CO, is known to undergo facile insertion reactions into a variety of transition metal-alkyl bonds. Indeed, Drent has patented alternating copolymerization of ethylene with S02 using various palladium(II) complexes.597 In 1998, Sen and coworkers also reported that [(dppp)PdMe(NCMe)]BF4 was an effective catalyst for the copolymerization of S02 with ethylene, propylene, and cyclopentene.598 There is a report of the insertion reactions of S02 into PdII-methyl bonds and the attempted spectroscopic detection of the copolymerization of ethylene and S02.599... [Pg.607]

Ito and co-workers observed the formation of zinc bound alkyl carbonates on reaction of carbon dioxide with tetraaza macrocycle zinc complexes in alcohol solvents.456 This reversible reaction was studied by NMR and IR, and proceeds by initial attack of a metal-bound alkoxide species. The metal-bound alkyl carbonate species can be converted into dialkyl carbonate. Spectroscopic studies suggested that some complexes showed monodentate alkyl carbonates, and varying the macrocycle gave a bidentate or bridging carbonate. Darensbourg isolated arylcarbonate compounds from zinc alkoxides as a by-product from work on polycarbonate formation catalysis.343... [Pg.1184]

Metal alkyl reagents react with the acidic OH groups of silica, probably by the electrophilic cleavage of the metal-carbon bond. For example, the electrophilic cleavage of the metal-carbon bond occurs when organometallic reagents react with the electrophilic OH groups of the silica surface (Scheme... [Pg.267]

It has been shown (p. 266) that transition metal alkyl compounds containing Cpd and C6H6 groups, ir-bonded to the metal inactivate the metal center for polymerization. It has also been shown by Nyholm and Aresta (45), in the platinum series, that five- or six-membered rings containing only sigma and ir-carbon-to-metal bonds are very stable compounds. These observations add chemical plausibility to reaction (29). [Pg.316]

Polymerizations. The polymerizations were carried out in an argon atmosphere in capped glass bottles fitted with a neoprene rubber gasket inner liner. In charging the polymerizations, the order of addition of materials was solvent first, then metal alkyls, next the barium salt, and finally the monomer(s). The amount of metal alkyl charged was sufficient to titrate the acidic impurities present in the solvent and polymerization bottle, plus the calculated amount for initiation of polymerizations. The mole ratio of barium to metal alkyl(s) was based on the moles of total alkalinity of barium to the moles of carbon-metal assayed. Unless otherwise stated,... [Pg.74]

The activated nickel powder is easily prepared by stirring a 1 2.3 mixture of NiL and lithium metal under argon with a catalytic amount of naphthalene (1(7 mole % based on nickel halide) at room temperature for 12 h in DME. The resulting black slurry slowly settles after stirring is stopped and the solvent can be removed via cannula if desired. Washing with fresh DME will remove the naphthalene as well as most of the lithium salts. For most of the nickel chemistry described below, these substances did not affect the reactions and hence they were not removed. The activated nickel slurries were found to undergo oxidative addition with a wide variety of aryl, vinyl, and many alkyl carbon halogen bonds. [Pg.231]

When alkyl oxalyl chlorides were employed instead of acyl halides, symmetrical dibenzyl ketones were formed in good yields(44). Transition metal carbonyls or metal salts/carbon monoxide have generally been used for... [Pg.232]

There is no question that the development and commercialization of lithium ion batteries in recent years is one of the most important successes of modem electrochemistiy. Recent commercial systems for power sources show high energy density, improved rate capabilities and extended cycle life. The major components in most of the commercial Li-ion batteries are graphite electrodes, LiCo02 cathodes and electrolyte solutions based on mixtures of alkyl carbonate solvents, and LiPF6 as the salt.1 The electrodes for these batteries always have a composite structure that includes a metallic current collector (usually copper or aluminum foil/grid for the anode and cathode, respectively), the active mass comprises micrometric size particles and a polymeric binder. [Pg.216]

Figure 1 provides several electrochemical windows of important, relevant processes, including the reduction of alkyl carbonates, ethers, Li insertion into graphite, and Li metal deposition. Recent studies revealed two major failure mechanisms of graphite electrodes in repeated Li insertion/ deinsertion processes 21... [Pg.217]

The most famous mechanism, namely Cossets mechanism, in which the alkene inserts itself directly into the metal-carbon bond (Eq. 5), has been proposed, based on the kinetic study [134-136], This mechanism involves the intermediacy of ethylene coordinated to a metal-alkyl center and the following insertion of ethylene into the metal-carbon bond via a four-centered transition state. The olefin coordination to such a catalytically active metal center in this intermediate must be weak so that the olefin can readily insert itself into the M-C bond without forming any meta-stable intermediate. Similar alkyl-olefin complexes such as Cp2NbR( /2-ethylene) have been easily isolated and found not to be the active catalyst precursor of polymerization [31-33, 137]. In support of this, theoretical calculations recently showed the presence of a weakly ethylene-coordinated intermediate (vide infra) [12,13]. The stereochemistry of ethylene insertion was definitely shown to be cis by the evidence that the polymerization of cis- and trans-dideutero-ethylene afforded stereoselectively deuterated polyethylenes [138]. [Pg.19]

In order to formally insert CH2, the growing alkyl chain must attain a situation of metal-to-carbon bonding that favors CH2 insertion over coupling of two CHR groups (R=H, alkyl).29 A (C, H)-chelating coordination mode characterized by agostic M-H-C interaction30 would meet this requirement. [Pg.209]

Certain metal alkyl compounds from p- and d-block elements react under very mild conditions with 1 under insertion into the element-carbon bond. Some examples are shown in Scheme 9. [Pg.15]

In view of the fact that early transition metal alkyls insert CO under very mild conditions (2, 5.) we chose to examine the reactions of electron-rich metal hydrides ( ) with the resultant dihapto acyl complexes. Such acyls obviously benefit from reduction of the CO bond order from three (in OO) to two. More significantly, the dihapto binding mode will significantly enhance the electrophilic character of the acyl carbon. [Pg.43]

Structure determinations of secondary metal alkyl complexes are relatively rare, yet they provide an opportunity to assess interactions of the metal with the /3-atoms of the alkyl. The angles (excluding hydrogen) about C(24) all exceed 109°, ranging from 111.7° to 115.1°. There is no evidence for any Re 0 interaction (compare V), this distance exceeding 3 A. Both the /3-carbon, C(25), and its attached hydrogens are over 3 A from rhenium. The hydrogen on the a-carbon, C(24J, is 2.76 A from rhenium. [Pg.55]


See other pages where Metal alkyls carbonation is mentioned: [Pg.190]    [Pg.853]    [Pg.29]    [Pg.72]    [Pg.190]    [Pg.853]    [Pg.29]    [Pg.72]    [Pg.289]    [Pg.95]    [Pg.425]    [Pg.261]    [Pg.185]    [Pg.206]    [Pg.6]    [Pg.110]    [Pg.228]    [Pg.252]    [Pg.198]    [Pg.264]    [Pg.266]    [Pg.267]    [Pg.1066]    [Pg.192]    [Pg.195]    [Pg.76]    [Pg.324]   
See also in sourсe #XX -- [ Pg.284 ]

See also in sourсe #XX -- [ Pg.284 ]

See also in sourсe #XX -- [ Pg.284 ]

See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Alkyl carbonate

Alkylated metals

Alkylation carbon

Carbon into metal alkyls

Carbon monoxide insertions metal-alkyl complexes

Carbon-metal bonds aryl, alkyl, and benzyl halides

© 2024 chempedia.info