Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide insertions metal-alkyl complexes

These complexes readily insert carbon monoxide between the alkyl and metal groups giving acylmetal complexes. As in the preceding examples, these complexes undergo alcoholysis readily to form esters and a hydride. The reaction is then made catalytic in the metal by adding a base to convert the hydride back into the carbonyl anion ... [Pg.332]

Compared in this section are the activation parameters and the relative reactivities toward SO2 of the various types of transition metal alkyl and aryl complexes. As shown in Table IV, the values of AS and AH range from — 63 to — 43 e.u. and from 2.7 to 8.7 kcal/mole, respectively. These entropies of activation are more negative than those for the solvent-assisted carbon monoxide insertion [—33 to —17 e.u. (1J7)] or for the SO2 insertion into the Sn—R (R = Ph and CHaPh)... [Pg.45]

One possible mechanistic sequence for the present reaction is shown in Scheme 7.1. The carbon monoxide insertion into the carbon-metal o bond of alkyltransition metal complexes is well known [88]. Thus, the oxidative addition of benzyl halide to metallic nickel gives benzylnickel (II) halide 4, and the insertion of carbon monoxide, which is formed by decarbonylation of alkyl oxalyl chloride into the benzyl-nickel bond of complex 4, would afford arylacetyl (II) complex 5. The metathesis of complexes 4 and 5 seems to give (arylacetyl)benzylnickel complex 6, which undergoes reductive elimination to yield l,3-diarylpropan-2-one, 3. The formation of 1,2-diarylethane may be explained by the reductive elimination of bisbenzylnickel complex 7 formed by metathesis of benzylnickel complex 4 [89]. It is also possible that the reaction of benzyl halide with complex 4 or 5 gives homocoupled product or ketone, respectively. [Pg.273]

Palladium(II) complexes possessing bidentate ligands are known to efficiently catalyze the copolymerization of olefins with carbon monoxide to form polyketones.594-596 Sulfur dioxide is an attractive monomer for catalytic copolymerizations with olefins since S02, like CO, is known to undergo facile insertion reactions into a variety of transition metal-alkyl bonds. Indeed, Drent has patented alternating copolymerization of ethylene with S02 using various palladium(II) complexes.597 In 1998, Sen and coworkers also reported that [(dppp)PdMe(NCMe)]BF4 was an effective catalyst for the copolymerization of S02 with ethylene, propylene, and cyclopentene.598 There is a report of the insertion reactions of S02 into PdII-methyl bonds and the attempted spectroscopic detection of the copolymerization of ethylene and S02.599... [Pg.607]

Another important reaction typically proceeding in transition metal complexes is the insertion reaction. Carbon monoxide readily undergoes this process. Therefore, the insertion reaction is extremely important in organoiron chemistry for carbonylation of alkyl groups to aldehydes, ketones (compare Scheme 1.2) or carboxylic acid derivatives. Industrially important catalytic processes based on insertion reactions are hydroformylation and alkene polymerization. [Pg.3]

The reaction sequence in the vinylation of aromatic halides and vinyl halides, i.e. the Heck reaction, is oxidative addition of the alkyl halide to a zerovalent palladium complex, then insertion of an alkene and completed by /3-hydride elimination and HX elimination. Initially though, C-H activation of a C-H alkene bond had also been taken into consideration. Although the Heck reaction reduces the formation of salt by-products by half compared with cross-coupling reactions, salts are still formed in stoichiometric amounts. Further reduction of salt production by a proper choice of aryl precursors has been reported (Chapter III.2.1) [1]. In these examples aromatic carboxylic anhydrides were used instead of halides and the co-produced acid can be recycled and one molecule of carbon monoxide is sacrificed. Catalytic activation of aromatic C-H bonds and subsequent insertion of alkenes leads to new C-C bond formation without production of halide salt byproducts, as shown in Scheme 1. When the hydroarylation reaction is performed with alkynes one obtains arylalkenes, the products of the Heck reaction, which now are synthesized without the co-production of salts. No reoxidation of the metal is required, because palladium(II) is regenerated. [Pg.203]

Migratory insertion is the principal way of building up the chain of a ligand before elimination. The group to be inserted must be unsaturated in order to accommodate the additional bonds and common examples include carbon monoxide, alkenes, and alkynes producing metal-acyl, metal-alkyl, and metal-alkenyl complexes, respectively. In each case the insertion is driven by additional external ligands, which may be an increased pressure of carbon monoxide in the case of carbonylation or simply excess phosphine for alkene and alkyne insertions. In principle, the chain extension process can be repeated indefinitely to produce polymers by Ziegler-Natta polymerization, which is described in Chapter 52. [Pg.1317]

The study of stoichiometric CO insertions into transition metal complexes is of great importance because this reaction is the first step m the catalytic conversion of carbon dioxide. Hence, these investigations can lead to the possibility of introducing carbon dioxide into transition metal-catalyzed synthetic processes. Analogies with carbon monoxide chemistry may be drawn, for instance. from the CO insertion into metal alkyl bonds leading to such important industrial processes as hydroformylation and carbonylalion. [Pg.171]

By the nature of its molecular mechanism, the carbonyl-insertion reaction represents a typical reaction mode of o alkyltransition metal complexes. Formation of the new C—C cr-bond takes place during a 1,2-alkyl-migration step, transforming an alkylmetal carbonyl moiety [cts-M(CO)R] into an acylmetal unit (M—COR) (89). In general, (s-cir-diene)-zirconocene complexes 5 appear to exhibit a substantial alkylmetal character (90). Therefore, it is not too surprising that some members of this class of compounds [in contrast to most other dienetransition metal complexes (97)] react with carbon monoxide with C—C bond formation (45). However, as demonstrated by X-ray structural data for 5 (Tables V... [Pg.26]

Addition of carbon monoxide and water to an alkene, i.e. hydrocarboxylation, is catalyzed by a variety of transition metal complexes, including [Ni(CO)4], [Co2(CO)s] and [HaPtClg]. Unfortunately this reaction usually leads to mixtures of products due to both metal-catalyzed alkene isomerization and the occurrence of Irath Markownikov and anti-Markownikov addition of the metal hydride intermediate to the alkene. The commercially available zirconium hydride [(C5Hs)2Zr(H)Cl] can be used as a stoichiometric reagent for conversion of alkenes to carboxylic acids under mild conditions (equation 23). In this case the reaction with linear alkenes gives exclusively terminal alkyl complexes even if the alkene double bond is internal. Insertion of CO followed by oxidative hydrolysis then leads to linear carboxylic acids in very good yield. [Pg.1027]

Alkyl- and arylisocyanides are electronically similar to CO and give insertions with transition and non-transition metal complexes. When a metal-alkyl derivative containing coordinated carbon monoxide is treated with an isocyanide, two products are possible [reactions (a) and (b)], depending on whether the inserted fragment is carbon monoxide or the isocyanide, respectively. [Pg.643]

As stated earlier, (11.3.1), the multiple insertion of carbon monoxide into the same metal-hydrocarbyl bond is a rather elusive reaction. On the other hand, multiple insertion of isocyanide has been reported for nickel(II). For example, when the nickelfO) derivative Ni(t-BuNC)4 was treated with Mel in hexane at RT, consecutive insertion of three RNC groups was observed to give the product of reaction (e), as a consequence of a primary oxidative addition of the alkyl iodide to the nickel(O) complex. It is interesting that one of the two terminal fragments of the five-membered metallacycle is reminiscent of an arrangement of the first insertion product. [Pg.643]

The main argument in favor of this possibility is that in metal-organic complexes containing alkyl groups and carbon monoxide, cis insertion has been observed. Application of this mechanism to Fischer-Tropsch reactions is therefore essentially reasoning by analogy. Since these views have been reviewed properly, we can confine ourselves to referring to the relevant literature (20). [Pg.177]

Once a reactive organotransition metal complex is formed, it can react further with other substrates to undergo the succeeding reactions of synthetic utility such as insertions of olehns or carbon monoxide into the metal-carbon bond to give new alkyl- or acyl transition-metal compounds. Important insertion processes are... [Pg.20]

Various unsaturated compounds can be inserted into the metal alkyl, aryl, and alkenyl complexes to give new organometallic complexes having various functional groups. The insertions of carbon monoxide (CO) and isocyanide (CNR) into transition metal-carbon a-bond are particularly important processes, since a carbon unit can be increased in the process and the acyl type complexes formed by the insertion processes can be subjected to further transformations to synthesize useful organic compounds. For example, the CO inserhon constitutes a fundamental step in industrially important processes such as hydroformylation of olefins, acetic acid synthesis from methanol and CO, Fischer-Tropsch process, amidocarbonylation, olefin and CO copolymerizahon processes as well as in a variety of laboratory syntheses of carbonyl containing compounds. [Pg.373]


See other pages where Carbon monoxide insertions metal-alkyl complexes is mentioned: [Pg.112]    [Pg.105]    [Pg.91]    [Pg.246]    [Pg.158]    [Pg.632]    [Pg.637]    [Pg.638]    [Pg.42]    [Pg.934]    [Pg.200]    [Pg.333]    [Pg.34]    [Pg.204]    [Pg.264]    [Pg.61]    [Pg.43]    [Pg.554]    [Pg.2021]    [Pg.1980]    [Pg.31]    [Pg.314]    [Pg.314]    [Pg.2020]    [Pg.264]    [Pg.3718]    [Pg.5]    [Pg.20]    [Pg.390]    [Pg.1076]   


SEARCH



1 monoxide complexes

Alkyl carbonate

Alkyl complexes

Alkyl complexes carbon monoxide insertions

Alkylated metals

Alkylation carbon

Alkylation complex

Alkylations complexes

Carbon complex

Carbon insertion

Carbon monoxide-metal complexes

Carbonate complexation

Carbonate) complexes

Insertion alkyl

Metal alkyls carbonation

Metal carbon monoxide

Metal insertion

Metal inserts

Metal monoxides

Metal-alkyl complexes

Metal-carbon complexes

Monoxide insertion

© 2024 chempedia.info