Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolic carotenoids

Carotenoids are predominantly synthesized in nature by photosynthetic plants, algae, bacteria, and some fungi. - Animals can metabolize carotenoids in a characteristic manner, but they are not able to synthesize carotenoids. The total global biosynthesis of carotenoids is estimated to be in excess of 100 million tons per year. ... [Pg.60]

The known beneficial effects of retinoids on malignancies are assumed to relate to retinoid receptor-mediated antipromoting and anti-initiating effects. The latter appeals to be influenced by interference of several xenobiotics with different steps of the retinoid metabolism in the target cell. Of the carotenoids, (3-carotene is the most potent retinol precursor, yet being... [Pg.1072]

It will be appreciated that the delivery of nutrients from foods is attenuated by the structure of the food and the way in which it is digested. Thus, delivery from the food structure occurs over the same timescale as gastric emptying. Carotenoids, and other compounds, isolated from the food structure are generally emptied from the stomach and absorbed more rapidly. These different rates of delivery may have profound effects on subsequent metabolism. [Pg.117]

The mechanisms of the metabolism and excretion of P-carotene are not clear, other than the identification of a number of partially oxidised intermediates found in plasma (Khachik et al., 1992). It is assumed that the carotenoids are metabolised in a manner analogous to the P-oxidation of fatty acids although there is no evidence for this. [Pg.119]

GIULIANO G, AQUiLANi R and DHARMAPURi s (2000) Metabolic engineering of plant carotenoids , Trends Plant Sci, 5, 406-9. [Pg.276]

MISAWA N and shimada h (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts , J Biotechnol, 59, 169-81. [Pg.277]

Among all food pigments, we have the most knowledge about the carotenoids related to their absorption and metabolism on a molecular basis. [Pg.160]

In the Unites States, the daily intake of 3-carotene is around 2 mg/day Several epidemiological studies have reported that consumption of carotenoid-rich foods is associated with reduced risks of certain chronic diseases such as cancers, cardiovascular disease, and age-related macular degeneration. These preventive effects of carotenoids may be related to their major function as vitamin A precursors and/or their actions as antioxidants, modulators of the immune response, and inducers of gap-junction communications. Not all carotenoids exert similar protective effects against specific diseases. By reason of the potential use of carotenoids as natural food colorants and/or for their health-promoting effects, research has focused on better understanding how they are absorbed by and metabolized in the human body. [Pg.161]

FIGURE 3.2.2 Metabolic pathways of carotenoids such as p-carotene. CM = chylomicrons. VLDL = very low-density lipoproteins. LDL = low-density lipoproteins. HDL = high-density lipoproteins. BCO = p-carotene 15,15 -oxygenase. BCO2 = p-carotene 9, 10 -oxygenase. LPL = lipoprotein lipase. RBP = retinol binding protein. SR-BI = scavenger receptor class B, type I. [Pg.162]

In intestinal cells, carotenoids can be incorporated into CMs as intact molecules or metabolized into mainly retinol (or vitamin A), but also in retinoic acid and apoc-arotenals (see below for carotenoid cleavage reactions). These polar metabolites are directly secreted into the blood stream via the portal vein (Figure 3.2.2). Within intestinal cells, retinol can be also esterified into retinyl esters. [Pg.163]

Both intact carotenoids and their apolar metabolites (retinyl esters) are secreted into the lymphatic system associated with CMs. In the blood circulation, CM particles undergo lipolysis, catalyzed by a lipoprotein lipase, resulting in the formation of CM remnants that are quickly taken up by the liver. In the liver, the remnant-associated carotenoid can be either (1) metabolized into vitamin A and other metabolites, (2) stored, (3) secreted with the bile, or (4) repackaged and released with VLDL particles. In the bloodstream, VLDLs are transformed to LDLs, and then HDLs by delipidation and the carotenoids associated with the lipoprotein particles are finally distributed to extrahepatic tissues (Figure 3.2.2). Time-course studies focusing on carotenoid appearances in different lipoprotein fractions after ingestion showed that CM carotenoid levels peak early (4 to 8 hr) whereas LDL and HDL carotenoid levels reach peaks later (16 to 24 hr). [Pg.163]

During, A. and Harrison, E.H., Intestinal absorption and metabolism of carotenoids insights from cell culture. Arch. Biochem. Biophys., 430, 77, 2004. [Pg.170]

Shewmaker, C.K. et al.. Seed-specific overexpression of phytoene synthase increase in carotenoids and other metabolic effects. Plant J., 20, 401, 1999. [Pg.235]

IPP and its DMAPP structural isomer are produced from glycolytic products by the methyl erythritol phosphate (MEP) pathway (Figure 5.3.1, Pathway 1). These isoprene units are condensed in a stepwise fashion to form the precursor to all carotenoids, geranylgeranyl di-phosphate (GGPP). GGPP is not solely metabolized to make carotenoids, but is a precursor for many other primary and secondary metab-... [Pg.357]

In plant plastids, GGPP is formed from products of glycolysis and is eight enzymatic steps away from central glucose metabolism. The MEP pathway (reviewed in recent literature - ) operates in plastids in plants and is a preferred source (non-mevalonate) of phosphate-activated prenyl units (IPPs) for plastid iso-prenoid accumulation, such as the phytol tail of chlorophyll, the backbones of carotenoids, and the cores of monoterpenes such as menthol, hnalool, and iridoids, diterpenes such as taxadiene, and the side chains of bioactive prenylated terpenophe-nolics such as humulone, lupulone, and xanthohumol. The mevalonic pathway to IPP that operates in the cytoplasm is the source of the carbon chains in isoprenes such as the polyisoprene, rubber, and the sesquiterpenes such as caryophyllene. [Pg.360]

Transgenic E. coli accumulate comparatively low levels of carotenoids " compared to microbial algae, yeasts, and bacteria. Many efforts ° have focused on increasing accumulation by manipulation of factors affecting metabolic flux and metabolite accnmnlation (listed and discnssed in Sections 5.3.1.1 and 5.3.1.3 A) and have been reviewed." - " In bacterial systems, approaches to control can be categorized as either infrastructural (plasmids, enzymes, strains) or ultrastructural (media and feeding, enviromnent, precursor pools, substrate flux). [Pg.380]

Careful empirical selection of the expression platform for carotenogenesis has included selection of the best strains for stability and degree of accumulation and the selection of compatible drug-resistance combinations and low copy number polycistronic plasmids to enhance product accumulation by decrease of metabolic burden." 5 Matthews and Wurtzel discussed culture and induction conditions - that have been explored in most studies. Most efforts to engineer carotenoid biosynthesis in E. coli focused on the genes and enzymes of the pathway and had a modest effect on improved accumulation. For example, substitution and over-expression of a GGPPS that uses IPP directly (discussed in... [Pg.380]

Understanding mechanisms controlling metabolon localization in plastids of different membrane architectures Little is known about metabolon structure, assembly, and membrane targeting. The carotenoid biosynthetic pathway exists on plastid membranes. However, plastids have different membrane architectures and therefore tissue- and plastid-specific differences in membrane targeting of the biosynthetic metabolon can be expected. Localization in chloroplasts that harbor both thylakoid and envelope membranes differs from the envelope membranes in endosperm amy-loplasts. In fact, localization on both thylakoid and envelope membranes implies that the carotenoid pathway is really not a single pathway, but a duplicated pathway that may very well have membrane-specific roles with regard to functions in primary and secondary metabolism. [Pg.383]

Sandmann, G., Rbmer, S., and Eraser, P.D., Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants, Metabol. Eng. 8, 291, 2006. DellaPenna, D., Plant metabolic engineering. Plant Physiol. 125, 160, 2001. Wurtzel, E.T. and Grotewold, E., Plant metabolic engineering, in Encyclopedia of... [Pg.386]

Lee, P. and Schmidt-Dannert, C., Metabolic engineering towards biotechnological production of carotenoids in microorganisms, Appl. Microbiol. Biotechnol. V60, 1, 2002. [Pg.387]


See other pages where Metabolic carotenoids is mentioned: [Pg.111]    [Pg.641]    [Pg.421]    [Pg.111]    [Pg.641]    [Pg.421]    [Pg.711]    [Pg.1072]    [Pg.121]    [Pg.260]    [Pg.265]    [Pg.266]    [Pg.268]    [Pg.270]    [Pg.272]    [Pg.273]    [Pg.279]    [Pg.33]    [Pg.147]    [Pg.150]    [Pg.160]    [Pg.163]    [Pg.184]    [Pg.348]    [Pg.349]    [Pg.349]    [Pg.349]    [Pg.353]    [Pg.357]    [Pg.357]    [Pg.374]    [Pg.383]    [Pg.384]   
See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Absorption and Metabolism of Carotenoids

Carotenoids metabolic transformations

Carotenoids metabolism

Carotenoids metabolism

Metabolic engineering carotenoids

Metabolism of carotenoids

© 2024 chempedia.info