Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercuration-reduction

However, various attempts to introduce stereospecifically the a-hydroxyl group at the desired position of the double bond by hydroboration were unsuccessful. Eventually hydration of the double bond was accomplished by mercuration-reduction protocol, which although occurring both with high regio and stereoselectivity furnished only the p hydroxy compound 339. The conversion of the latter with formaldehyde into ( )-epielwesine (335) constituted in a formal sense, the synthesis of ( )-elwesine (320) as well, since Sanchez et al 88 had shown that the inversion of the hydroxyl group in 335 could be accomplished with diethylazodicarboxylate, triphenylphosphine and formic acid. [Pg.519]

E. Bettelli, P. Cherubini, P. D Andrea, P. Passacantilli, and G. Piancatelli, Mercuration-reductive demercuration of glycals A mild and convenient entry to 2-deoxy-sugars, Tetrahedron, 54 (1998) 6011-6018. [Pg.203]

Introduction Chemo-, Regio-, and Stereoselectivity Chemoselectivity Controlling Chemoselectivity Regioselectivity Markovnikov Hydration Mercuration-reduction Wacker oxidation... [Pg.277]

We need to add a propyl group to the di-lithium derivative 26 (chapter 2), reduce the C02H group to CH3, and convert the alkene into a ketone by the mercuration-reduction sequence described in chapter 17. [Pg.440]

Reaction of the JJ-benzyl-arabinofuranosylamine (13) with vinylmagnesium bromide yielded the alkene (14), which was converted to the C-glycoside (15) by a mercuration-reduction sequence (Scheme 2). ... [Pg.109]

In the mercuration-reductive demercuration of enamines, mercuration at carbon is the dominant reaction pathway when ionic mercury(ii) salts are employed this sequence constitutes a general high-yield synthesis of tertiary amines (Scheme 112). [Pg.153]

Oxymercuration of 4-r-butylcyclohexene, followed by NaBH4 reduction, gives c/5-4 t-butylcyclohexanol and tran5-3-t-butylcyclohexanol in approximately equal amounts. l-Methyl-4-t-butylcyclohexene under similar conditions gives only c/5-4-r-butyl-l-methylcyclohexanol. Formulate a mechanism for the oxy-mercuration-reduction process that is consistent with this stereochemical result. [Pg.187]

Mercuric chloride test. Add mercuric chloride solution to formic acid or a solution of formate and w arm. A white precipitate of mercurous chloride, insoluble in dil. HCl, is produced. Sometimes the reduction proceeds as far as metallic mercury, which appears as a grey precipitate. [Pg.350]

Acetamido-4-methylselenazole can react with mercuric acetate to yield 5-mercuriacetate derivatives that can be converted to the chloro derivatives by the action of sodium chloride. Treatment with potassium iodide leads to reduction regenerating the initial compound with loss of mercury (Scheme 16) (4). [Pg.231]

Batteries. Many batteries intended for household use contain mercury or mercury compounds. In the form of red mercuric oxide [21908-53-2] mercury is the cathode material in the mercury—cadmium, mercury—indium—bismuth, and mercury—zinc batteries. In all other mercury batteries, the mercury is amalgamated with the zinc [7440-66-6] anode to deter corrosion and inhibit hydrogen build-up that can cause cell mpture and fire. Discarded batteries represent a primary source of mercury for release into the environment. This industry has been under intense pressure to reduce the amounts of mercury in batteries. Although battery sales have increased greatly, the battery industry has aimounced that reduction in mercury content of batteries has been made and further reductions are expected (3). In fact, by 1992, the battery industry had lowered the mercury content of batteries to 0.025 wt % (3). Use of mercury in film pack batteries for instant cameras was reportedly discontinued in 1988 (3). [Pg.109]

Methylation of avermectins B and B2 leads to the corresponding derivatives of the A series (49). A procedure involving the oxidation of the 5-methoxy group with mercuric acetate and NaBH reduction of the 5-keto-intermediate allows the conversion of the A to the B components (50). The 23-hydroxy group of the "2" components, after selective protection of the other secondary hydroxy groups, is converted to a thionocarbonate, which can be elirninated to give the 22,23-double bond of the "1" components alternatively it can be reduced with tributyltin hydride to the 22,23-dihydro derivatives (= ivermectins) (51). [Pg.284]

Guaiacols. Cresote, obtained from the pyrolysis of beechwood, and its active principles guaiacol [90-05-1] (1) and cresol [93-51-6] (2) have long been used ia expectorant mixtures. The compounds are usually classed as direct-acting or stimulant expectorants, but their mechanisms of action have not been well studied. Cresol is obtained by the Clemmensen reduction of vanillin (3), whereas guaiacol can be prepared by a number of methods including the mercuric oxide oxidation of lignin (qv) (4), the ziac chloride reduction of acetovanillone (5), and the diazotization and hydrolysis of o-anisidine (6). [Pg.517]

Oxazole, 2-dimethylamino-4-phenyl-nitration, 6, 190 Oxazole, 2,5-diphenyl-irradiation, 6, 189 nitration, 6, 190 oxidation, 6, 187 reduction, 6, 194 synthesis, 6, 222 Oxazole, 4,5-diphenyl-mercuration, 6, 190 2-substituted... [Pg.727]

H NMR, 4, 1042 ionization potentials, 4, 1046 synthesis, 4, 1066 UV spectra, 4, 1044 Selenolo[2,3 -cjthiophenes H NMR, 4, 1042 synthesis, 4, 1067 UV spectra, 4, 1044 Selenolo[3,2-6]thiophenes dipole moments, 4, 1049 H NMR, 4, 1042 ionization potentials, 4, 1046 synthesis, 4, 1066 UV spectra, 4, 1044 Selenolo[3,4-6]thiophenes synthesis, 4, 1067 Selenolo[3,4-c]thiophenes addition reactions, 4, 1062 synthesis, 4, 1076 Selenomethionine applications, 4, 970 Selenophene, 3-acetamido-reactions, 4, 953 Selenophene, 2-acetyl-mercuration, 4, 946 nitration, 4, 947 Selenophene, 2-alkyl-reactions, 4, 45 synthesis, 4, 135, 967 Selenophene, 3-alkyl-synthesis, 4, 135, 967 Selenophene, 3-aryl-synthesis, 4, 963 Selenophene, 2-benzyl-reactivity, 4, 946 Selenophene, 2-benzyl-5-ethyl-reduction, 4, 950... [Pg.841]

The exchange of aromatic protons can be effected in the absence of any -OH or —NH2 activating group during the course of a Clemmensen reduction in deuteriochloric and deuterioacetic acid mixture (see section Ill-D). This reaction has been carried out with various tricyclic diterpenes and is best illustrated by the conversion of dehydroabietic acid into its 12,14-d2-labeled analog (40 -+ 41).Amalgamated zinc is reportedly necessary for the exchange reaction since the results are less satisfactory when a zinc chloride-mercuric chloride mixture is used. [Pg.156]

The previous sections have dealt with stable C=N-I- functionality in aromatic rings as simple salts. Another class of iminium salt reactions can be found where the iminium salt is only an intermediate. The purpose of this section is to point out these reactions even though they do not show any striking differences in their reactivity from stable iminium salts. Such intermediates arise from a-chloroamines (133-135), isomerization of oxazolidines (136), reduction of a-aminoketones by the Clemmensen method (137-139), reductive alkylation by the Leuckart-Wallach (140-141) or Clarke-Eschweiler reaction (142), mercuric acetate oxidation of amines (46,93), and in reactions such as ketene with enamines (143). [Pg.201]

The dimer of 1-methyl- -pyrroline (39) was obtained by reduction of N-methylpyrrole with zinc and hydrochloric acid (132) and, together with the trimer, by mercuric acetate dehydrogenation of N-methylpyrrolidine (131). J -Pyrroline-N-oxides form dimers in a similar manner (302). Treatment of 1,2-dimethyl-zl -piperideine with formaldehyde, producing l-methyl-3-acetylpiperidine (603), serves as an example of a mixed aldol reaction (Scheme 18). [Pg.298]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

Reduction of the enamine system of an aminostilbene by sodium in liquid ammonia 189) and of a 17-enaminosteroid by aluminum and mercuric chloride in alcohol 560) have also been reported. [Pg.433]

The reduction of 2-methyl-1,2,3,4-tetrahydro-y-carboline (92) with zinc and hydrochloric acid in the presence of mercuric chloride gives the indolenine derivative, 2-methyl-l,2,3,4,4a,9b-hexahydro-y-carbo-line (93). A related compound, 4,9b-diethyl-2-methyl-l,2,3,4,4a,9b-hexahydro-y-carboline (96), was obtained by catalytic hydrogenation of 95, which was prepared by Fischer ring closure of the phenyl-hydrazone 94. The stereochemistry of the B/C ring junction in these... [Pg.107]

Alkyl mercuric hydrides are generated in situ by reduction of an alkyl mercuric salt with sodium borohydridc (Scheme 3.91). Their use as radical traps was first reported by Hill and Whitesides491 and developed for the study of radical-olefin reactions by Giese,489490 Tirrell492 and coworkers. Careful choice of reagents and conditions provides excellent yields of adducts of nucleophilic radicals (e.g. -hexyl, cyclohexyl, /-butyl, alkoxyalkyl) to electron-deficient monomers (e.g. acrylics). [Pg.137]

The more generally known mercuric oxide-mercuric chloride hydrolysis 2 may also be used, and in the present case it gives a yield of about 90%. The reductive desulfurization of Part E is also based on the work of Mukaiyama.12 It is clearly superior to Raney nickel desulfurization, which gives only 36-45% of 3-benzylindole. [Pg.14]


See other pages where Mercuration-reduction is mentioned: [Pg.2013]    [Pg.283]    [Pg.283]    [Pg.2013]    [Pg.283]    [Pg.283]    [Pg.492]    [Pg.198]    [Pg.198]    [Pg.530]    [Pg.551]    [Pg.797]    [Pg.829]    [Pg.829]    [Pg.894]    [Pg.346]    [Pg.426]    [Pg.298]    [Pg.98]    [Pg.61]    [Pg.95]    [Pg.390]    [Pg.189]    [Pg.136]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



© 2024 chempedia.info