Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass three-phase

Countereurrent bubble flow with liquid-supported solids, whieh ean be affeeted by downward liquid fluidization of partieles having a density lower than that of the liquid, has been referred to as inverse three-phase fluidization. The mass transfer potential of sueh a eountercurrent operation is worthy of study, especially for cases in whieh dispersion of the gas rather than the liquid is ealled for and the required gas-liquid ratio and throughput ean be effected without flooding. In contrast, the eorresponding eoeurrent mode has reeeived more attention than all other eases and eonstitutes the majority of the literature on three-phase fluidization. [Pg.487]

Matter is anything that has mass and occupies space. It exists in three phases solid, liquid, and gas. A solid has a fixed shape and volume. A liquid has a fixed volume but is not rigid in shape it takes on the shape of the container. A gas has neither a fixed volume nor a rigid shape it takes on both the volume and the shape of the container. [Pg.3]

A number of three-phase processes (processes in which contact is established between a gaseous phase, a liquid phase, and a solid-particle phase in order to promote chemical conversion and the transfer of momentum, heat, and mass) are becoming increasingly important in the process industries. [Pg.71]

The gas-liquid-particle processes considered in this paper may be grouped into two major classes. In the first, components of all three phases participate in the chemical reaction. In the second, components of only the gaseous and the solid phases participate in the chemical reaction, the liquid phase functioning as a chemically inactive medium for the transfer of momentum, heat, and mass. Important examples of these two types of processes are described, respectively, in Sections II,A and II,B. [Pg.73]

Gas-liquid-particle operations are of a comparatively complicated physical nature Three phases are present, the flow patterns are extremely complex, and the number of elementary process steps may be quite large. Exact mathematical models of the fluid flow and the mass and heat transport in these operations probably cannot be developed at the present time. Descriptions of these systems will be based upon simplified concepts. [Pg.81]

Most of the actual reactions involve a three-phase process gas, liquid, and solid catalysts are present. Internal and external mass transfer limitations in porous catalyst layers play a central role in three-phase processes. The governing phenomena are well known since the days of Thiele [43] and Frank-Kamenetskii [44], but transport phenomena coupled to chemical reactions are not frequently used for complex organic systems, but simple - often too simple - tests based on the use of first-order Thiele modulus and Biot number are used. Instead, complete numerical simulations are preferable to reveal the role of mass and heat transfer at the phase boundaries and inside the porous catalyst particles. [Pg.170]

In the design of optimal catalytic gas-Hquid reactors, hydrodynamics deserves special attention. Different flow regimes have been observed in co- and countercurrent operation. Segmented flow (often referred to as Taylor flow) with the gas bubbles having a diameter close to the tube diameter appeared to be the most advantageous as far as mass transfer and residence time distribution (RTD) is concerned. Many reviews on three-phase monolithic processes have been pubhshed [37-40]. [Pg.195]

For the case of a three-phase problem, where the solute is accessible to the a, (3, and y phases, Whitaker [427] finds the overall average phase concentration for the case of local mass equilibrium given by... [Pg.572]

Hydrodynamics, Heat and Mass Transfer in Inverse and Circulating Three-Phase Fluidized-Bed Reactors for WasteWater Treatment... [Pg.101]

Recent research development of hydrodynamics and heat and mass transfer in inverse and circulating three-phase fluidized beds for waste water treatment is summarized. The three-phase (gas-liquid-solid) fluidized bed can be utilized for catalytic and photo-catalytic gas-liquid reactions such as chemical, biochemical, biofilm and electrode reactions. For the more effective treatment of wastewater, recently, new processing modes such as the inverse and circulation fluidization have been developed and adopted to circumvent the conventional three-phase fluidized bed reactors [1-6]. [Pg.101]

To provide the pr equisite knowledge for designing the three-phase fluidized-bed reactors with new modes, the hydrodynamics such as phase holdup, mixing and bubble properties and heat and mass transfer characteristics in the reactors have to be determined. Thus, in this study, the hydrodynamics and heat and mass transfer characteristics in the inverse and circulating three-phase fluidized-bed reactors for wastewater treatment in the present and previous studies have been summarized. Correlations for the hydrod3aiamics as well as mass and heat transfer coefficients are proposed. The areas wherein future research should be undertaken to improve... [Pg.101]

Very limited data on the heat and mass transfer in three-phase inverse fluidization systems is available up to now. For the wastewater treatment, the reactor temperature should be controlled and maintained within a certain level to optimize the reactor performance, since the temperature of reactor or process can provide the microorganisms with favorable circumances. [Pg.102]

Column reactors can contain a draft tube - possibly filled with a packing characterized by low pressure drop - or be coupled with a loop tube, to make the gas recirculating within the reaction zone (see Fig. 5.4-9). In recent years, the Buss loop reactor has found many applications in two- and three-phase processes About 200 Buss loop systems are now in operation worldwide, also in fine chemicals plants. This is due to the high mass-transfer rate between the gas and the liquid phase. The Buss loop reactor can be operated semibatch-wise or continuously. As a semibach reactor it is mostly used for catalytic hydrogenations. [Pg.265]

Hofmann, H., 1983. in Mass Transfer with Chemical Reaction in Multiphase Systems, Vol. II Three-Phase Systems , Erdogan, A. (Ed.), Martinus Nijhoff Publishers, the Hague. [Pg.408]

The voltammetry for ion transfer at an interface of two immiscible electrolyte solutions, VITIES, which is a powerful method for identifying the transferring ion and for determining the amount of ion transferred, must be helpful for the elucidation of the oscillation process [17 19]. The VITIES was also demonstrated to be useful for ion transport through a membrane, considering that the membrane transport of ions is composed of the ion transfers at two aqueous-membrane interfaces and the mass transfers and/or chemical reactions in three phases [2,20,21]. [Pg.610]

E. Crezee, B.W. Hoffer, R.J. Berger, M. Makkee, F. Kapteijn and J.A. Motrlijrt, Three-phase hydrogerration of D-glucose over a carbon supported mtherrirrm catalyst - mass transfer and kinetics, Applied Catalysis A General 251 (2003) 1. [Pg.116]

A reasonable throughput screening equipment consisting of six parallel reactor tubes was constructed. The system operates continuously and can be used for screening of various catalysts, different particle sizes and temperatures. Gas, gas-sohd and gas-solid-liquid applications are possible. The screening equipment is coupled to gas chromatographic-mass spectrometric analysis. The constraction principles, the equipment as well as the application of the equipment is demonstrated with three-phase catalytic systems. [Pg.419]

The system, therefore, is at equilibrium at a given temperature when the partial pressure of carbon dioxide present has the required fixed value. This result is confirmed by experiment which shows that there is a certain fixed dissociation pressure of carbon dioxide for each temperature. The same conclusion can be deduced from the application of phase rule. In this case, there are two components occurring in three phases hence F=2-3 + 2 = l, or the system has one degree of freedom. It may thus legitimately be concluded that the assumption made in applying the law of mass action to a heterogeneous system is justified, and hence that in such systems the active mass of a solid is constant. [Pg.255]

The other state variables are the fugacity of dissolved methane in the bulk of the liquid water phase (fb) and the zero, first and second moment of the particle size distribution (p0, Pi, l )- The initial value for the fugacity, fb° is equal to the three phase equilibrium fugacity feq. The initial number of particles, p , or nuclei initially formed was calculated from a mass balance of the amount of gas consumed at the turbidity point. The explanation of the other variables and parameters as well as the initial conditions are described in detail in the reference. The equations are given to illustrate the nature of this parameter estimation problem with five ODEs, one kinetic parameter (K ) and only one measured state variable. [Pg.315]

The removal of toluene is assumed to take place in two stages. The first stage corresponds to the removal of free NAPL, which, according to the phase distribution calculations (Step 2 Table 14.4) represents a mass of Mreml = 11.941. The second stage corresponds to the removal of toluene, which is distributed among the other three phases, and represents a mass of Mrem2 = 16.57 - 11.94 = 4.631. [Pg.533]

Slurry Reactors. Slurry reactors are commonly used in situations where it is necessary to contact a liquid reactant or a solution containing the reactant with a solid catalyst. To facilitate mass transfer and effective catalyst utilization, the catalyst is usually suspended in powdered or in granular form. This type of reactor has been used where one of the reactants is normally a gas at the reaction conditions and the second reactant is a liquid, e.g., in the hydrogenation of various oils. The reactant gas is bubbled through the liquid, dissolves, and then diffuses to the catalyst surface. Obviously mass transfer limitations can be quite significant in those instances where three phases (the solid catalyst, and the liquid and gaseous reactants) are present and necessary to proceed rapidly from reactants to products. [Pg.430]

The term two-phase flow covers an extremely broad range of situations, and it is possible to address only a small portion of this spectrum in one book, let alone one chapter. Two-phase flow includes any combination of two of the three phases solid, liquid, and gas, i.e., solid-liquid, gas-liquid, solid-gas, or liquid-liquid. Also, if both phases are fluids (combinations of liquid and/or gas), either of the phases may be continuous and the other distributed (e.g., gas in liquid or liquid in gas). Furthermore, the mass ratio of the two phases may be fixed or variable throughout the system. Examples of the former are nonvolatile liquids with solids or noncondensable gases, whereas examples of the latter are flashing liquids, soluble solids in liquids, partly miscible liquids in liquids, etc. In addition, in pipe flows the two phases may be uniformly distributed over the cross section (i.e., homogeneous) or they may be separated, and the conditions under which these states prevail are different for horizontal flow than for vertical flow. [Pg.443]

Mass transfer considerations are critical in any bioprocess. In typical, aerobic, suspended cell fermentations, the major concern is the oxygen transfer rate, determined by the overall mass transfer coefficient, kft, and the driving force. In three-phase biofluidization, in which the cells are immobilized as a biofilm or within carrier particles, the situation is further complicated by possible intraparticle diffusion limitations. Numerous recent studies have addressed these issues. [Pg.648]

Gas-Liquid Mass Transfer. Gas-liquid mass transfer within the three-phase fluidized bed bioreactor is dependent on the interfacial area available for mass transfer, a the gas-liquid mass transfer coefficient, kx, and the driving force that results from the concentration difference between the bulk liquid and the bulk gas. The latter can be easily controlled by varying the inlet gas concentration. Because estimations of the interfacial area available for mass transfer depends on somewhat challenging measurements of bubble size and bubble size distribution, much of the research on increasing mass transfer rates has concentrated on increasing the overall mass transfer coefficient, kxa, though several studies look at the influence of various process conditions on the individual parameters. Typical values of kxa reported in the literature are listed in Table 19. [Pg.648]

The use of floating bubble breakers has been used to increase the volumetric mass transfer coefficient in a three-phase fluidized bed of glass beads (Kang et al., 1991) perhaps a similar strategy would prove effective for a bed of low density beads. Static mixers have been shown to increase kxa for otherwise constant process conditions by increasing the gas holdup and, therefore, the interfacial area (Potthoff and Bohnet, 1993). [Pg.650]

Understanding the effect of reactor diameter on the volumetric mass transfer coefficient is critical to successful scale up. In studies of a three-phase fluidized bed bioreactor using soft polyurethane particles, Karamanev et al. (1992) found that for a classical fluidized bed bioreactor, kxa could either increase or decrease with a change in reactor diameter, depending on solids holdup, but for a draft tube fluidized bed bioreactor, kxa always increased with increased reactor diameter. [Pg.650]

Nore, O., Briens, C., Margaritis, A., and Wild, G., Hydrodynamics, Gas-Liquid Mass Transfer and Particle-Liquid Heat and Mass Transfer in a Three-Phase Fluidized Bed for Biochemical Process Applications, Chem. Eng. Sci., 47 3573 (1992)... [Pg.674]


See other pages where Mass three-phase is mentioned: [Pg.278]    [Pg.531]    [Pg.198]    [Pg.423]    [Pg.310]    [Pg.188]    [Pg.86]    [Pg.104]    [Pg.106]    [Pg.557]    [Pg.59]    [Pg.420]    [Pg.424]    [Pg.248]    [Pg.154]    [Pg.155]    [Pg.82]    [Pg.257]    [Pg.272]    [Pg.623]    [Pg.650]    [Pg.650]    [Pg.651]    [Pg.679]   
See also in sourсe #XX -- [ Pg.154 , Pg.155 ]




SEARCH



MASS BALANCES FOR THREE-PHASE REACTORS

Mass transfer coefficients three-phase slurry reactors

Three-phase

Three-phase systems mass-balance equation

© 2024 chempedia.info