Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Three-phase slurry reactors mass transfer coefficients

If a transport parameter rc — CS/CL is defined, where Cs is the concentration of C at the catalyst surface, then Peterson134 showed that for gas-solid reactions t)c < rc, where c is the catalyst effectiveness factor for C. For three-phase slurry reactors, Reuther and Puri145 showed that rc could be less than t)C if the reaction order with respect to C is less than unity, the reaction occurs in the liquid phase, and the catalyst is finely divided. The effective diffusivity in the pores of the catalyst particle is considerably less if the pores are filled with liquid than if they are filled with gas. For finely divided catalyst, the Sherwood number for the liquid-solid mass-transfer coefficient based on catalyst particle diameter is two. [Pg.49]

Three phase slurry reactors are characterized by a gas-liquid (K,a) and liquid-solid (k ) mass transfer coefficient. These coefficients were determined for the rotating disc reactor at the appropriate operation conditions ... [Pg.933]

An interesting study of the gas liquid mass transfer in a three-phase agitated slurry reactor was recently reported by Joosten et al.51 They showed that in the absence of solids, the volumetric mass-transfer coefficient can be well correlated to total power (power dissipated by stirrer + gas) per unit volume, but poorly correlated to the power dissipated by the stirrer only, as done in Fig. 9-14. Their data were well correlated by the correlation of Van Dierendock.23... [Pg.336]

Any form of convection, of course, increases the value of Ks. In slurry operation with no liquid flow, gas flow induces convection. In an agitated slurry reactor, stirring causes convection. In a pulsating slurry reactor, pulsation of the slurry induces convection and in a three-phase fluidized bed, the movements of both gas and liquid phases cause convection. Any one or more modes of convection will increase the value of the solid-liquid mass-transfer coefficient. In broad terms, the convective liquid-solid mass-transfer coefficient is correlated by-two steady state theories. Here we briefly review and compare them. [Pg.348]

While the lower order models described in Section 6.3 are useful for the quick prediction of the overall performance of a reactor, these models often rely on simplified flow approximations and often fail to account for change in the local fluid dynamics or transport processes during the presence of internal hardware or changes in flow regimes. Moreover, these models are also based on empirical knowledge (as discussed in Section 6.4) of several parameters such as interfacial area, dispersion coefficients, and mass transfer coefficients. Some of these limitations may be avoided by using CFD models for simulations of gas-liquid-solid flows in three-phase slurry and fluidized bed. [Pg.147]

Three-phase packed bed reactors generally have a lower specific capacity than slurry reactors, for two reasons Much larger catalyst particles are used, so that for rapid reactions, with diffusion or mass transfer limitations, much larger catalyst volumes are required. Also, the maximum specific gas/liquid interfacial area is generally smaller. On the other hand, the volumetric mass transfer coefficients at the gas/liquid and at the liquid/solid interfaces are of comparable magnitude, so they are better adapted to one another. Heat transfer rates to the walls are quite limited. [Pg.120]

When the reaction in the porous catalyst is very rapid, the conversion rate will be determined by gas/liquid or liquid/solid mass transfer. Particularly volumetric gas/liquid mass transfer coefficients (liquid side) are not very much different in slurry-reactors and in three phase packed beds (aU under optimum conditions). [Pg.284]


See other pages where Three-phase slurry reactors mass transfer coefficients is mentioned: [Pg.1168]    [Pg.146]    [Pg.555]   
See also in sourсe #XX -- [ Pg.145 , Pg.146 ]




SEARCH



Mass coefficient

Mass three-phase

Mass transfer coefficient

Phase transfer coefficient

Phases—Mass Transfer

Reactor mass transfer

Reactor phase

Slurry reactor

Slurry reactors mass-transfer coefficient

Slurry-phase reactor

Three mass transfer

Three-phase

Three-phase reactors

Three-phase slurry reactor

© 2024 chempedia.info