Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass sequential

All mass spectrometers analyze ions for their mass-to-charge ratios (m/z values) by separating the individual m/z values and then recording the numbers (abundance) of ions at each m/z value to give a mass spectrum. Quadrupoles allow ions of different m/z values to pass sequentially e.g., ions at m/z 100, 101, 102 will pass one after the other through the quadrupole assembly so that first m/z 100 is passed, then 101, then 102 (or vice versa), and so on. Therefore, the ion collector (or detector) at the end of the quadrupole assembly needs only to cover one point or focus for a whole spectrum to be scanned over a period of time (Figure 28.1a). This type of point detector records ion arrivals in a time domain, not a spatial one. [Pg.201]

Other types of mass spectrometer may use point, array, or both types of collector. The time-of-flight (TOF) instrument uses a special multichannel plate collector an ion trap can record ion arrivals either sequentially in time or all at once a Fourier-transform ion cyclotron resonance (FTICR) instrument can record ion arrivals in either time or frequency domains which are interconvertible (by the Fourier-transform technique). [Pg.201]

In modem mass spectrometry, ion collectors (detectors) are generally based on the electron multiplier and can be separated into two classes those that detect the arrival of all ions sequentially at a point (a single-point ion collector) and those that detect the arrival of all ions simultaneously (an array or multipoint collector). This chapter compares the uses of single- and multipoint ion collectors. For more detailed discussions of their construction and operation, see Chapter 28, Point Ion Collectors (Detectors), and Chapter 29, Array Collectors (Detectors). In some forms of mass spectrometry, other methods of ion detection can be used, as with ion cyclotron instmments, but these are not considered here. [Pg.211]

Ions of different m/z values pass sequentially in time through the quadrupole mass filter to reach an in-line, single-point ion collector. [Pg.212]

Other types of mass spectrometer can use point, array, or both types of ion detection. Ion trap mass spectrometers can detect ions sequentially or simultaneously and in some cases, as with ion cyclotron resonance (ICR), may not use a formal electron multiplier type of ion collector at all the ions can be detected by their different electric field frequencies in flight. [Pg.212]

Another form of array is called a microchannel plate detector. A time-of-flight (TOP) mass spectrometer collects ions sequentially in time and can use a point detector, but increasingly, the TOP instrument uses a microchannel plate, most particularly in an orthogonal TOP mode. Because the arrays and microchannel plates are both essentially arrays or assemblies of small electron multipliers, there may be confusion over their roles. This chapter illustrates the differences between the two arrays. [Pg.213]

By altering the electric fields in a consistent manner, the masses of all ions formed in the source can be scanned sequentially from low mass to high or vice-versa to give a mass spectrum. [Pg.405]

Because a GC and an MS both operate in the gas phase, it is a simple matter to connect the two so that separated components of a mixture are passed sequentially from the GC into the MS, where their mass spectra are obtained. This combined GC/MS is a very powerful analytical technique, the two instruments complementing each other perfectly. [Pg.415]

Ingots of EGS are evaluated for resistivity, crystal perfection, and mechanical and physical properties, such as she and mass. The iagots are sHced iato wafers usiag at least 10 machining and polishing procedures. These wafers are sHced sequentially from the iugot, and evaluated for the correct surface orientation, thickness, taper, and bow. As a final procedure, the wafers are chemically cleaned to remove surface contaminants prior to use. [Pg.346]

Multidimensional or hyphenated instmments employ two or more analytical instmmental techniques, either sequentially, or in parallel. Hence, one can have multidimensional separations, eg, hplc/gc, identifications, ms/ms, or separations/identifications, such as gc/ms (see CHROMATOGRAPHY Mass spectrometry). The purpose of interfacing two or more analytical instmments is to increase the analytical information while reducing data acquisition time. For example, in tandem-mass spectrometry (ms/ms) (17,18), the first mass spectrometer appHes soft ionization to separate the mixture of choice into molecular ions the second mass spectrometer obtains the mass spectmm of each ion. [Pg.394]

The Cardiac Cycle. The heart (Eig. lb) performs its function as a pump as a result of a rhythmical spread of a wave of excitation (depolarization) that excites the atrial and ventricular muscle masses to contract sequentially. Maximum pump efficiency occurs when the atrial or ventricular muscle masses contract synchronously (see Eig. 1). The wave of excitation begins with the generation of electrical impulses within the SA node and spreads through the atria. The SA node is referred to as the pacemaker of the heart and exhibits automaticity, ie, it depolarizes and repolarizes spontaneously. The wave then excites sequentially the AV node the bundle of His, ie, the penetrating portion of the AV node the bundle branches, ie, the branching portions of the AV node the terminal Purkinje fibers and finally the ventricular myocardium. After the wave of excitation depolarizes these various stmetures of the heart, repolarization occurs so that each of the stmetures is ready for the next wave of excitation. Until repolarization occurs the stmetures are said to be refractory to excitation. During repolarization of the atria and ventricles, the muscles relax, allowing the chambers of the heart to fill with blood that is to be expelled with the next wave of excitation and resultant contraction. This process repeats itself 60—100 times or beats per minute... [Pg.111]

The essential differences between sequential-modular and equation-oriented simulators are ia the stmcture of the computer programs (5) and ia the computer time that is required ia getting the solution to a problem. In sequential-modular simulators, at the top level, the executive program accepts iaput data, determines the dow-sheet topology, and derives and controls the calculation sequence for the unit operations ia the dow sheet. The executive then passes control to the unit operations level for the execution of each module. Here, specialized procedures for the unit operations Hbrary calculate mass and energy balances for a particular unit. FiaaHy, the executive and the unit operations level make frequent calls to the physical properties Hbrary level for the routine tasks, enthalpy calculations, and calculations of phase equiHbria and other stream properties. The bottom layer is usually transparent to the user, although it may take 60 to 80% of the calculation efforts. [Pg.74]

Sequentially adding up each individual segment on the histogram gives the Cumulative mass fraction, m d)... [Pg.12]

In the ion-trap, ionization of the sample is carried out as in conventional operation and ions of all m/z ratios take up stable trajectories within the trap. In the production of a conventional full-scan mass spectrum, ions of different m/z values are then sequentially made unstable and ejected from the trap to the detector. In MS-MS operation, ions of all m/z ratios, except that required for further study, are made unstable and ejected from the trap. The ions remaining in the trap, only those of the selected m/z ratio, are now excited to bring about their dissociation. The resulting product ions are then sequentially made unstable and sent to the detector to generate the product-ion spectrum. [Pg.67]

Sequential extraction was performed as described by Redgwell and Selvendran [1], WUS was sequentially extracted with chelating agent (ChSS), dilute alkali (DASS), 1 M alkali (1 MASS) and 4 M alkali (4 MASS) and a cellulose-rich residue (RES) remained. [Pg.512]

WUS was sequentially extracted, which resulted in two pectin-rich extracts (ChSS and DASS), two hemicellulose-rich extracts (1 MASS and 4 MASS) and a residue. The yield of these extracts on sugar basis and the sugar composition is shown in Table 2. [Pg.513]

Mass spectrometry was applied in conjunction with thermolysis studies leading mainly to sulfines and rearranged products with four-membered sulfoxides and to a loss of sulfur dioxide with sulfones The fragmentation pattern of thietes under electron impact can be explained by the sequential loss of the elements of sulfur monoxide and oxygen from an intervening cyclic sulfmate intermediate . ... [Pg.442]


See other pages where Mass sequential is mentioned: [Pg.533]    [Pg.533]    [Pg.177]    [Pg.205]    [Pg.205]    [Pg.219]    [Pg.313]    [Pg.421]    [Pg.198]    [Pg.540]    [Pg.207]    [Pg.527]    [Pg.93]    [Pg.52]    [Pg.89]    [Pg.110]    [Pg.33]    [Pg.278]    [Pg.58]    [Pg.19]    [Pg.28]    [Pg.442]    [Pg.69]    [Pg.394]    [Pg.597]    [Pg.221]    [Pg.103]    [Pg.288]    [Pg.72]    [Pg.225]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Mass balances sequential solution

Ultrafiltration mass balance, sequential

© 2024 chempedia.info