Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass film theory

Film Theory. Many theories have been put forth to explain and correlate experimentally measured mass transfer coefficients. The classical model has been the film theory (13,26) that proposes to approximate the real situation at the interface by hypothetical "effective" gas and Hquid films. The fluid is assumed to be essentially stagnant within these effective films making a sharp change to totally turbulent flow where the film is in contact with the bulk of the fluid. As a result, mass is transferred through the effective films only by steady-state molecular diffusion and it is possible to compute the concentration profile through the films by integrating Fick s law ... [Pg.21]

Other Models for Mass Transfer. In contrast to the film theory, other approaches assume that transfer of material does not occur by steady-state diffusion. Rather there are large fluid motions which constantiy bring fresh masses of bulk material into direct contact with the interface. According to the penetration theory (33), diffusion proceeds from the interface into the particular element of fluid in contact with the interface. This is an unsteady state, transient process where the rate decreases with time. After a while, the element is replaced by a fresh one brought to the interface by the relative movements of gas and Uquid, and the process is repeated. In order to evaluate a constant average contact time T for the individual fluid elements is assumed (33). This leads to relations such as... [Pg.23]

Neither the penetration nor the surface renewal theory can be used to predict mass transfer coefficients directiy because T and s are not normally known. Each suggests, however, that mass transfer coefficients should vary as the square root of the molecular diffusivity, as opposed to the first power suggested by the film theory. [Pg.23]

Equation 39 can often be simplified by adopting the concept of a mass transfer unit. As explained in the film theory discussion eadier, the purpose of selecting equation 27 as a rate equation is that is independent of concentration. This is also tme for the Gj /k aP term in equation 39. In many practical instances, this expression is fairly independent of both pressure and Gj as increases through the tower, increases also, nearly compensating for the variations in Gj. Thus this term is often effectively constant and can be removed from the integral ... [Pg.25]

The factors and Xbm cannot be justified on the basis of mass-transfer theory since they are based on overall resistances. These factors therefore are included in the equations by analogy with the corresponding film equations. [Pg.603]

Simplified Mass-Transfer Theories In certain simple situations, tne mass-transfer coefficients can be calculated from first principles. The film, penetration, and surface-renewal theories are attempts to extend tnese theoretical calculations to more complex sit-... [Pg.603]

Effects of Total Pressure on Uq and The influence of total system pressure on the rate of mass transfer from a gas to a licniid or to a solid has been shown to be the same as would be predicted from stagnant-film theory as defined in Eq. (5-285), where... [Pg.607]

Mass-transfer theory indicates that for trays of a given design the factors most hkely to inflnence E in absorption and stripping towers are the physical properties of the flnids and the dimensionless ratio Systems in which the mass transfer is gas-film-controlled may be expected to have plate efficiencies as high as 50 to 100 percent, whereas plate efficiencies as low as 1 percent have been reported for the absorption of gases of low sohibility (large m) into solvents of relatively high viscosity. [Pg.1358]

F = Function of the molecular volume of the solute. Correlations for this parameter are given in Figure 7 as a function of the parameter (j), which is an empirical constant that depends on the solvent characteristics. As points of reference for water, (j) = 1.0 for methanol, (j) = 0.82 and for benzene, (j) = 0.70. The two-film theory is convenient for describing gas-liquid mass transfer where the pollutant solute is considered to be continuously diffusing through the gas and liquid films. [Pg.257]

The simplest theory involved in mass transfer across an interface is film theory, as shown in Figure 3.10. In this model, the gas (CO) is transferred from the gas phase into the liquid phase and it must reach the surface of the growing cells. The rate equation for this case is similar to the slurry reactor as mentioned in Levenspiel.20... [Pg.58]

Increase in mass-transfer rate per unit area. As stated above, agitated gas-liquid contactors are used, in general, when it is necessary to deal with sparingly soluble gases. According to the terminology of the film theory, absorption is then controlled by the liquid resistance, and agitation of the liquid phase could increase the mass-transfer rate per unit area. As will be... [Pg.298]

In evaluating their results they assumed the film theory, and, because the oxygen is sparingly soluble and the chemical reaction rate high, they also assumed that the liquid film is the controlling resistance. The results were calculated as a volumetric mass-transfer coefficient based, however, on the gas film. They found that the volumetric mass-transfer coefficient increased with power input and superficial gas velocity. Their results can be expressed as follows ... [Pg.303]

Thus either the penetration theory or the film theory (equation 10.144 or 10.145) respectively can be used to describe the mass transfer process. The error will not exceed some 9 per cent provided that the appropriate equation is used, equation 10.144 for L2 jDt > n and equation 10.145 for L2/Dt < n. Equation 10.145 will frequently apply quite closely in a wetted-wall column or in a packed tower with large packings. Equation 10.144 will apply when one of the phases is dispersed in the form of droplets, as in a spray tower, or in a packed tower with small packing elements. [Pg.616]

When the film theory is applicable to each phase (the two-film theory), the process is steady state throughout and the interface composition does not then vary with time. For this case the two film coefficients can readily be combined. Because material does not accumulate at the interface, the mass transfer rate on each side of the phase boundary will be the same and for two phases it follows that ... [Pg.619]

A pure gas is absorbed into a liquid with which it reacts. The concentration in the liquid is sufficiently low for the mass transfer to be covered by Fick s Law and the reaction is first-order with respect to the solute gas. It may be assumed that the film theory may be applied to the liquid and that the concentration of solute gas falls from the saturation value to zero across the film. The reaction is initially carried out at 293 K. By what factor will the mass transfer rate across the interface change, if the temperature is raised to 313 K ... [Pg.630]

Equation (11.36) gives the central result of film theory and, as is discussed in any good text on mass transfer, happens to be wrong. Experimental measurements show that k, is proportional to rather than to 3>a, at least when the liquid phase is turbulent. [Pg.410]

The mass balances accompanied by reaction (5) of species A and B, and the boundary conditions based on the film theory are given as follows ... [Pg.346]

Note that the transfer rate equation is based on an overall concentration driving force, (X-X ) and overall mass transfer coefficient, Kl. The two-film theory for interfacial mass transfer shows that the overall mass transfer coefficient, Kl, based on the L-phase is related to the individual film coefficients for the L and G-phase films, kL and ko, respectively by the relationship... [Pg.168]

The experiments were conducted at four different temperatures for each gas. At each temperature experiments were performed at different pressures. A total of 14 and 11 experiments were performed for methane and ethane respectively. Based on crystallization theory, and the two film theory for gas-liquid mass transfer Englezos et al. (1987) formulated five differential equations to describe the kinetics of hydrate formation in the vessel and the associate mass transfer rates. The governing ODEs are given next. [Pg.314]

Membrane transport represents a major application of mass transport theory in the pharmaceutical sciences [4], Since convection is not generally involved, we will use Fick s first and second laws to find flux and concentration across membranes in this section. We begin with the discussion of steady diffusion across a thin film and a membrane with or without aqueous diffusion resistance, followed by steady diffusion across the skin, and conclude this section with unsteady membrane diffusion and membrane diffusion with reaction. [Pg.46]

It may be appropriate here to introduce film theory. As mentioned in reference to the steady diffusion across a thin film, we often hypothesize a film called an unstirred layer to account for the aqueous diffusion resistance to mass transfer. Film theory is valuable not only because of its simplicity but also because of its practical utility. However, the thickness of the film is often difficult to determine. In the following, we try to answer the question, What does the thickness of the film represent ... [Pg.57]

The two-film theory considering molecular diffusion through stagnant liquid and gas films is the traditional way of understanding mass transfer across the air-water boundary. As briefly described, other theories exist. However, the two-film theory gives an understanding of fundamental phenomena that may lead to simple empirical expressions for use in practice. [Pg.73]

The transport process, according to the two-film theory, of a volatile component across the air-water interface is depicted in Figure 4.3. The figure illustrates a concept that concentration gradients in both phases exist and that the total resistance for mass transfer is the sum of the resistance in each phase. [Pg.74]

Although mass transfer across the water-air interface is difficult in terms of its application in a sewer system, it is important to understand the concept theoretically. The resistance to the transport of mass is mainly expected to reside in the thin water and gas layers located at the interface, i.e., the two films where the gradients are indicated (Figure 4.3). The resistance to the mass transfer in the interface itself is assumed to be negligible. From a theoretical point of view, equilibrium conditions exist at the interface. Because of this conceptual understanding of the transport across the air-water boundary, the theory for the mass transport is often referred to as the two-film theory (Lewis and Whitman, 1924). [Pg.74]

According to the two-film theory, it is appropriate to consider the transport of volatile components between the water phase and the air phase in two steps from the bulk water phase to the interface and from the interface to the air, or vice versa. The driving force for the transfer of mass per unit surface area from the water phase to the interface and from the interface to the air phase is determined from the difference between the actual molar fractions, xA and yA, and the corresponding equilibrium values, xA and yA ... [Pg.74]

Laubriet et al. [Ill] modelled the final stage of poly condensation by using the set of reactions and kinetic parameters published by Ravindranath and Mashelkar [112], They used a mass-transfer term in the material balances for EG, water and DEG adapted from film theory J = 0MMg — c ), with c being the interfacial equilibrium concentration of the volatile species i. [Pg.78]

In SSP, the boundaries for the mass balances are defined by the particle instead of the reactor or the reactor compartment dimensions and the process conditions are accounted for by a boundary condition. The mass transfer at the particle/gas interface is mostly described according to the film theory by using a mass-transfer coefficient. [Pg.85]

A relation between dy/dZ and (Ay)/ may be obtained on the basis of the two-film theory of mass transfer. For the vapour film, Fick s law, Volume 1, Chapter 10, gives ... [Pg.641]

The preceding analysis of the process of absorption is based on the two-film theory of Whitman 11. It is supposed that the two films have negligible capacity, but offer all the resistance to mass transfer. Any turbulence disappears at the interface or free surface, and the flow is thus considered to be laminar and parallel to the surface. [Pg.659]

All three of these proposals give the mass transfer rate N A directly proportional to the concentration difference (CAi — CAL) so that they do not directly enable a decision to be made between the theories. However, in the Higbie-Danckwerts theory N A a s/Dj whereas NA film theory. Danckwerts applied this theory to the problem of absorption coupled with chemical reaction but, although in this case the three proposals give somewhat different results, it has not been possible to distinguish between them. [Pg.659]

As Sherwood and Pigford(3) point out, the use of spray towers, packed towers or mechanical columns enables continuous countercurrent extraction to be obtained in a similar manner to that in gas absorption or distillation. Applying the two-film theory of mass transfer, explained in detail in Volume 1, Chapter 10, the concentration gradients for transfer to a desired solute from a raffinate to an extract phase are as shown in Figure 13.19, which is similar to Figure 12.1 for gas absorption. [Pg.737]

There have been many studies of the effect of boundary films on mass and heat transfer to single pellets and in packed beds, including the work of Ranz and Marshall 27 and Dwivedi and Upadhey(28). Other theories of mass and heat transfer are discussed in Volume 1, Chapter 10, although only the steady-state film-theory is considered here. It is assumed that the difference in concentration and temperature between the bulk fluid and the external surface of a pellet is confined to a narrow laminar boundary-layer in which the possibility of accumulation of adsorbate or of heat is neglected. [Pg.1003]

Additional experiments in a loop reactor where a significant mass transport limitation was observed allowed us to investigate the interplay between hydrodynamics and mass transport rates as a function of mixer geometry, the ratio of the volume hold-up of the phases and the flow rate of the catalyst phase. From further kinetic studies on the influence of substrate and catalyst concentrations on the overall reaction rate, the Hatta number was estimated to be 0.3-3, based on film theory. [Pg.163]

The reaction order of one is also in good accordance with the film theory, where the rate of mass transport linearly correlates with the equilibrium concentration of citral in the aqueous phase. As a matter of fact, the mass transport rate is of first order regarding the substrate concentration in the organic phase. Therefore, what is measured is in fact the rate of mass transport and not the rate of chemical reaction. This result is in our opinion a good example of how kinetic parameters could be falsified when the reaction is limited by mass transport and not kinetics. [Pg.188]

There are several theories concerned with mass transfer across a phase boundary. One of the most widely used is Whitman s two-film theory in which the resistance to transfer in each phase is regarded as being located in two thin films, one on each side of the interface. The concentration gradients are assumed to be linear in each of these layers and zero elsewhere while at the interface itself, equilibrium conditions exist (Fig. 5). Other important theories are Higbie s penetration theory and the theory of surface renewal due to Danckwerts. All lead to the conclusion that, in... [Pg.35]

Figure 23.1 Setting up the rate equation for straight mass transfer based on the two film theory. Figure 23.1 Setting up the rate equation for straight mass transfer based on the two film theory.

See other pages where Mass film theory is mentioned: [Pg.339]    [Pg.510]    [Pg.604]    [Pg.59]    [Pg.87]    [Pg.339]    [Pg.614]    [Pg.619]    [Pg.474]    [Pg.81]    [Pg.658]    [Pg.676]    [Pg.44]   
See also in sourсe #XX -- [ Pg.81 , Pg.82 ]




SEARCH



Film theory

Film theory of mass transfer

Film theory, for mass transfer

Mass theory

Mass transfer coefficients from film theory

Mass transfer film theory

Mass transfer models film theory

Mass transfer two-film theory

Mass-transfer coefficients film theory

Two-film theory of mass transfer

© 2024 chempedia.info