Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Total magnesium

Total mass of noncarbonate hardness of magnesium Total mass of Mg(HC03)2... [Pg.522]

Hydrogen cartxtnate (standard) Magnesium, total Phosphate (inorganic), total Potassium, tolal Sodium, tolal... [Pg.714]

Conductivity Suspended Solids Orthophosphate Polyphosphate Organic Phosphate Total Organic Carbon Ceilcium, Total Calcium, Dissolved Magnesium, Total Magnesium, Dissolved Aluminum, Total Aluminum, Dissolved... [Pg.831]

Monitors potential silicate or hydroxide deposition if value differs from magnesium, total. [Pg.831]

The bismuth dross formed is removed from the surface of the lead on completion of the batch. Drosses normally contain between three and ten per cent Bi, and commonly around six per cent Calcium plus magnesium total around two per cent and the remainder is lead. Drosses can be upgraded by pressing or centrifuging to remove entrained lead. [Pg.220]

Figure 7-15 shows the time evolution of the temperature, total energy, and potential energy for a 300 ps simulation of the tetracycline repressor dimer in its induced (i.e., hgand-bound) form. Starting from the X-ray structure of the monomer in a complex with one molecule of tetracycline and a magnesium ion (protein database... [Pg.369]

Mag nesia. ndAlumina. Suspension. A mixture of salts, available as Maalox, Mylanta, Gelusil, and Aludrox, contains magnesium hydroxide [1309-42-8] Mg(OH)2, and variable amounts of aluminum oxide in the form of aluminum hydroxide and hydrated aluminum oxide, ie, 2.9—4.2% magnesium hydroxide and 2.0—2.4% aluminum oxide, Al O, for a mixture of 4.9—6.6% combined magnesium hydroxide and aluminum oxide. This mixture may contain a flavoring and antimicrobial agents in a total amount not to exceed 0.5% (see Aluminum compounds, aluminum oxide). [Pg.200]

The preferred method of determining water in glycerol is by the Kad Fischer volumetric method (18). Water can also be determined by a special quantitative distillation in which the distilled water is absorbed by anhydrous magnesium perchlorate (19). Other tests such as ash, alkalinity or acidity, sodium chloride, and total organic residue are included in AOCS methods (13,16,18). [Pg.349]

Detergents are metal salts of organic acids used primarily in crankcase lubricants. Alkylbenzenesulfonic acids, alkylphenols, sulfur- and methjiene-coupled alkyl phenols, carboxyUc acids, and alkylphosphonic acids are commonly used as their calcium, sodium, and magnesium salts. Calcium sulfonates, overbased with excess calcium hydroxide or calcium carbonate to neutralize acidic combustion and oxidation products, constitute 65% of the total detergent market. These are followed by calcium phenates at 31% (22). [Pg.242]

Mg(OH)2 powder is classified by OSHA as a nuisance dust. ACGIH categorizes the powder form as particulates not otherwise classified. Exposure limits are as follows (108) ACGIH 10 mg/m , OSHA 5 mg/m (respirable), and 15 mg/m (total). Magnesium hydroxide is reported in the EPA TSCA inventory (109). [Pg.351]

Safety. Magnesium oxide (fume) has a permissible exposure limit (PEL) (134) (8 hours, TWA), of 10 mg/m total dust and 5 mg/m respirable fraction. Tumorigenic data (intravenous in hamsters) show a TD q of 480 mg/kg after 30 weeks of intermittent dosing (135), and toxicity effects data show a TC q of 400 mg/m for inhalation in humans (136). Magnesium oxide is compatible with most chemicals exceptions are strong acids, bromine pentafluoride, chlorine trifluoride, interhalogens, strong oxidizers, and phosphorous pentachloride. [Pg.355]

The recovery of vanadium from these slags is of commercial interest because of the depletion of easily accessible ores and the comparatively low concentrations (ranging from less than 100 ppm to 500 ppm) of vanadium in natural deposits (147,148). In the LILCO appHcations the total ash contained up to 36% 20 (147). Vanadium is of value in the manufacture of high strength steels and specialized titanium alloys used in the aerospace industry (148,149). Magnesium vanadates allow the recovery of vanadium as a significant by-product of fuel use by electric utiUties (see Recycling, nonferrous LffiTALS). [Pg.360]

The U.S. domestic capacity of ammonium perchlorate is roughly estimated at 31,250 t/yr. The actual production varies, based on the requirements for soHd propellants. The 1994 production ran at about 11,200 t/yr, 36% of name plate capacity. Environmental effects of the decomposition products, which result from using soHd rocket motors based on ammonium perchlorate-containing propellants, are expected to keep increasing pubHc pressure until consumption is reduced and alternatives are developed. The 1995 price of ammonium perchlorate is in the range of 1.05/kg. Approximately 450 t/yr of NH ClO -equivalent cell Hquor is sold to produce magnesium and lithium perchlorate for use in the production of batteries (113). Total U.S. domestic sales and exports for sodium perchlorate are about 900 t/yr. In 1995, a solution containing 64% NaClO was priced at ca 1.00/kg dry product was also available at 1.21/kg. [Pg.68]

Of the binary peroxides made from hydrogen peroxide, calcium peroxide is the most important. World production is about 2000 t/yr, which is dominated by the dough-conditioning market in the United States. The markets for the other binary peroxides, such as those of zinc, magnesium, and strontium, total only a few hundred metric tons. Sodium peroxide and potassium superoxide are made from the alkaU metals and thek total markets are in the hundreds of tons. [Pg.99]

In most analytical procedures for determining the total phosphoms content (normally expressed in terms of P20 ), the phosphates are converted to the orthophosphate form. Typically, condensed phosphates are hydrolyzed to orthophosphate by boiling in dilute mineral acid (0.1 N). The orthophosphate is then deterrnined by gravimetric or spectrophotometric methods. For gravimetric deterrnination, insoluble phosphomolybdates (or magnesium ammonium orthophosphate) is formed. [Pg.340]

Of the cations (counterions) associated with polar groups, sodium and potassium impart water solubiUty, whereas calcium, barium, and magnesium promote oil solubiUty. Ammonium and substituted ammonium ions provide both water and oil solubiUty. Triethanolammonium is a commercially important example. Salts (anionic surfactants) of these ions ate often used in emulsification. Higher ionic strength of the medium depresses surfactant solubihty. To compensate for the loss of solubiUty, shorter hydrophobes ate used for appHcation in high ionic-strength media. The U.S. shipment of anionic surfactants in 1993 amounted to 49% of total surfactant production. [Pg.238]

Obtaining maximum performance from a seawater distillation unit requires minimising the detrimental effects of scale formation. The term scale describes deposits of calcium carbonate, magnesium hydroxide, or calcium sulfate that can form ia the brine heater and the heat-recovery condensers. The carbonates and the hydroxide are conventionally called alkaline scales, and the sulfate, nonalkaline scale. The presence of bicarbonate, carbonate, and hydroxide ions, the total concentration of which is referred to as the alkalinity of the seawater, leads to the alkaline scale formation. In seawater, the bicarbonate ions decompose to carbonate and hydroxide ions, giving most of the alkalinity. [Pg.241]

The needed amounts of lime and soda ash can be calculated from the stoichiometry of the reactions. The effluent quaUty is a function of the solubihties of calcium carbonate and magnesium hydroxide and of the quantities of softening chemicals added. The acceptable level of total hardness can be decided and usually is 70—120 mg/L (265—454 mg/gal), expressed as CaC03. The sum of the solubihties of calcium carbonate and magnesium hydroxide is ca 50—70 mg/L (190—265 mg/gal), depending upon the pH. The sum of the concentrations of the carbonic species HCO/ +, ... [Pg.279]


See other pages where Total magnesium is mentioned: [Pg.2061]    [Pg.68]    [Pg.432]    [Pg.2061]    [Pg.68]    [Pg.432]    [Pg.877]    [Pg.975]    [Pg.91]    [Pg.238]    [Pg.327]    [Pg.223]    [Pg.386]    [Pg.163]    [Pg.222]    [Pg.315]    [Pg.330]    [Pg.347]    [Pg.350]    [Pg.350]    [Pg.351]    [Pg.359]    [Pg.273]    [Pg.176]    [Pg.522]    [Pg.178]    [Pg.433]    [Pg.7]    [Pg.280]    [Pg.149]    [Pg.182]    [Pg.193]    [Pg.437]    [Pg.439]    [Pg.231]    [Pg.280]   
See also in sourсe #XX -- [ Pg.1911 , Pg.1911 , Pg.1912 ]




SEARCH



© 2024 chempedia.info