Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deposition hydroxide

A simple calculation based on the solubility product of ferrous hydroxide and assuming an interfacial pH of 9 (due to the alkalisation of the cathodic surface by reaction ) shows that, according to the Nernst equation, at -0-85 V (vs. CU/CUSO4) the ferrous ion concentration then present is sufficient to permit deposition hydroxide ion. It appears that the ferrous hydroxide formed may be protective and that the practical protection potential ( —0-85 V), as opposed to the theoretical protection potential (E, = -0-93 V), is governed by the thermodynamics of precipitation and not those of dissolution. [Pg.121]

Partial reduction is common, leading to some uncertainty about the composition of the catalyst in the active system. Figure 6.13 shows nickel crystallites in contact with NifAl2]04. which may play some role in the catalytic step. If Ni[ Ab]04 ts not a factor, then better results may be possible by eliminating calcination and reducing the deposited hydroxide or salt directly. [Pg.117]

Austenitic stainless steels appear to have significantly greater potential for aqueous corrosion resistance than their ferritic counterparts. This is because the three most commonly used austenite stabilizers, Ni, Mn, andN, all contribute to passivity. As in the case of ferritic stainless steel. Mo, one of the most potent alloying additions for improving corrosion resistance, can also be added to austenitic stainless steels in order to improve the stability of the passive film, especially in the presence of Cl ions. The passive film formed on austenitic stainless steels is often reported to be duplex, consisting of an inner barrier oxide film and outer deposit hydroxide or salt film. [Pg.217]

On standing, gelatinous aluminium hydroxide, which may initially have even more water occluded than indicated above, is converted into a form insoluble in both acids and alkalis, which is probably a hydrated form of the oxide AI2O3. Both forms, however, have strong adsorptive power and will adsorb dyes, a property long used by the textile trade to dye rayon. The cloth is first impregnated with an aluminium salt (for example sulphate or acetate) when addition of a little alkali, such as sodium carbonate, causes aluminium hydroxide to deposit in the pores of the material. The presence of this aluminium hydroxide in the cloth helps the dye to bite by ad sorbing it—hence the name mordant (Latin mordere = to bite) dye process. [Pg.151]

Amino-4 -methylthiazole slowly decomposes on storage to a red viscous mass. It can be stored as the nitrate, which is readily deposited as pink crystals when dilute nitric acid is added to a cold ethanolic solution of the thiazole. The nitrate can be recrystallised from ethanol, although a faint pink colour persists. Alternatively, water can be added dropwise to a boiling suspension of the nitrate in acetone until the solution is just clear charcoal is now added and the solution, when boiled for a short time, filtered and cooled, deposits the colourless crystalline nitrate, m.p. 192-194° (immersed at 185°). The thiazole can be regenerated by decomposing the nitrate with aqueous sodium hydroxide, and extracting the free base with ether as before. [Pg.306]

Alternatively, treat a solution of 3 9 g. of the 6is-diazo ketone in 50 ml. of warm dioxan with 15 ml. of 20 per cent, aqueous ammonia and 3 ml. of 10 per cent, aqueous silver nitrate under reflux in a 250 or 500 ml. flask on a water bath. Nitrogen is gently evolved for a few minutes, followed by a violent reaction and the production of a dark brown and opaque mixture. Continue the heating for 30 minutes on the water bath and filter hot the diamide of decane-1 lO dicarboxyhc acid is deposited on cooling. Filter this off and dry the yield is 3 -1 g., m.p. 182-184°, raised to 184-185° after recrystallisation from 25 per cent, aqueous acetic add. Hydrolyse the diamide (1 mol) by refluxing for 2-5 hours with 3N potassium hydroxide (4 mols) acidify and recrystaUise the acid from 20 per cent, acetic acid. The yield of decane-1 10-dicarboxyhc acid, m.p. 127-128°, is almost quantitative. [Pg.905]

Amino-3 5-diiodobenzoic acid. In a 2 litre beaker, provided with a mechanical stirrer, dissolve 10 g. of pure p-aminobenzoic acid, m.p. 192° (Section IX,5) in 450 ml. of warm (75°) 12 -5 per cent, hydrochloric acid. Add a solution of 48 g. of iodine monochloride (1) in 40 ml. of 25 per cent, hydrochloric acid and stir the mixture for one minute during this time a yellow precipitate commences to appear. Dilute the reaction mixtiue with 1 litre of water whereupon a copious precipitate is deposited. Raise the temperature of the well-stirred mixture gradually and maintain it at 90° for 15 minutes. Allow to cool to room tempera-tiue, filter, wash thoroughly with water and dry in the air the yield of crude acid is 24 g. Purify the product by dissolving it in dilute sodium hydroxide solution and precipitate with dilute hydrochloric acid the yield of air-dried 4-amino-3 5-diiodobenzoic acid, m.p. >350°, is 23 g. [Pg.973]

Ammonia—Gas-Cured Flame Retardants. The first flame-retardant process based on curing with ammonia gas, ie, THPC—amide—NH, consisted of padding cotton with a solution containing THPC, TMM, and urea. The fabric was dried and then cured with either gaseous ammonia or ammonium hydroxide (96). There was Httle or no reaction with cellulose. A very stable polymer was deposited in situ in the cellulose matrix. Because the fire-retardant finish did not actually react with the cellulose matrix, there was generally Httle loss in fabric strength. However, the finish was very effective and quite durable to laundering. [Pg.489]

In the geochemistry of fluorine, the close match in the ionic radii of fluoride (0.136 nm), hydroxide (0.140 nm), and oxide ion (0.140 nm) allows a sequential replacement of oxygen by fluorine in a wide variety of minerals. This accounts for the wide dissemination of the element in nature. The ready formation of volatile silicon tetrafluoride, the pyrohydrolysis of fluorides to hydrogen fluoride, and the low solubility of calcium fluoride and of calcium fluorophosphates, have provided a geochemical cycle in which fluorine may be stripped from solution by limestone and by apatite to form the deposits of fluorspar and of phosphate rock (fluoroapatite [1306-01 -0]) approximately CaF2 3Ca2(P0 2 which ate the world s main resources of fluorine (1). [Pg.171]

Occurrence. Niobium and tantalum usually occur together. Niobium never occurs as the metal, ie, ia the free state. Sometimes it occurs as a hydroxide, siUcate, or borate most often it is combiaed with oxygen and another metal, forming a niobate or tantalate ia which the niobium and tantalum isomorphously replace one another with Htde change ia physical properties except density. Ore concentrations of niobium usually occur as carbonatites and are associated with tantalum ia pegmatites and alluvial deposits. Principal niobium-beariag minerals can be divided iato two groups, the titano- and tantalo-niobates. [Pg.22]

Boehmite (OC-Aluminum Oxide-Hydroxide). Boehmite, the main constituent of bauxite deposits in Europe, is also found associated with gibbsite in tropical bauxites in Africa, Asia, and Austraha. Hydrothemial transformation of gibbsite at temperatures above 150 °C is a common method for the synthesis of weU-cry stalhzed boehmite. Higher temperatures and the presence of alkali increase the rate of transfomiation. Boehmite ciy stals of 5—10 ]liii size (Fig. 3) are produced by tliis method. Fibrous (acicular) boehmite is obtained under acidic hydrothemial conditions (6). Excess water, about 1% to 2% higher than the stoichiometric 15%, is usually found in hydrothemiaHy produced boehmite. [Pg.169]

In dmm boilers sodium hydroxide (caustic), sodium phosphate, or both may be added for pH and scale control. Sodium hydroxide is used more in Europe than in the United States, where sodium phosphate treatment is usually preferred. In boilers operating above 4 MPa (580 psia), caustic concentrations must be carefully controlled to prevent highly corrosive deposits from forming. In the lowest pressure boilers, phosphate treatment may be used to compensate for lower purity feedwater. As the boiler pressure increases, the allowable phosphate concentration decreases, and at 16.5 MPa (2400 psia) or above, equiUbrium phosphate treatment may be used. In this treatment, caustic is added to a low phosphate concentration in the boiler to maintain the proper pH (20). [Pg.362]

Dilution with water reverses the reaction, and heating the solution Hberates sulfur dioxide. Upon being added to a solution of teUurides, teUurium forms colored polyteUurides. Unlike selenium, teUurium is not soluble in aqueous sodium sulfite. This difference offers a method of separating the two elements. Like selenium, teUurium is soluble in hot alkaline solutions except for ammonium hydroxide solutions. Cooling reverses the reaction. Because teUurium forms solutions of anions, Te , and cations, Te" ", teUurium films can be deposited on inert electrodes of either sign. [Pg.384]

Barium titanate thin films can be deposited on various substances by treating with an aqueous solution containing barium salts and an alkanolamine-modifted titanate such as TYZOR TE (151). In a similar fashion, reaction of a tetraalkyl titanate with an alkah metal hydroxide, such as potassium hydroxide, gives oxyalkoxide derivatives (KTi O(OR) ), which can be further processed to give alkali metal titanate powders, films, and fibers (152—155). The fibers can be used as adsorbents for radioactive metals such as cesium, strontium, and uranium (156). [Pg.151]

Obtaining maximum performance from a seawater distillation unit requires minimising the detrimental effects of scale formation. The term scale describes deposits of calcium carbonate, magnesium hydroxide, or calcium sulfate that can form ia the brine heater and the heat-recovery condensers. The carbonates and the hydroxide are conventionally called alkaline scales, and the sulfate, nonalkaline scale. The presence of bicarbonate, carbonate, and hydroxide ions, the total concentration of which is referred to as the alkalinity of the seawater, leads to the alkaline scale formation. In seawater, the bicarbonate ions decompose to carbonate and hydroxide ions, giving most of the alkalinity. [Pg.241]

A uniform coating of calcium carbonate deposited on the metal surfaces physically segregates the metal from the corrosive environment. To develop the positive LSI required to deposit calcium carbonate, it is usually necessary to adjust the pH or calcium content of the water. Soda ash, caustic soda, or lime (calcium hydroxide) may be used for this adjustment. Lime is usually the most economical alkaH because it raises the calcium content as weU as the alkalinity. [Pg.269]

Precipita.tingInhibitors. As discussed earlier, the localized pH at the cathode of the corrosion cell is elevated due to the generation of hydroxide ions. Precipitating inhibitors form complexes that are insoluble at this high pH (1—2 pH units above bulk water), but whose deposition can be controlled at the bulk water pH (typically 7—9 pH). A good example is zinc, which can precipitate as hydroxide, carbonate, or phosphate. Calcium carbonate and calcium orthophosphate are also precipitating inhibitors. Orthophosphate thus exhibits a dual mechanism, acting as both an anodic passivator and a cathodic precipitator. [Pg.270]

Both iron and aluminum are particulady troublesome because of their abiUty to act as coagulants. Also, their soluble and insoluble hydroxide forms can each cause precipitation of some water treatment chemicals, such as orthophosphate. Airborne contaminants usually consist of clay and dirt particles but can include gases such as hydrogen sulfide, which forms insoluble precipitates with many metal ions. Process leaks introduce a variety of contaminants that accelerate deposition and corrosion. [Pg.271]

The other type of nickel electrode involves constmctions in which the active material is deposited in situ. This includes the sintered-type electrode in which nickel hydroxide is chemically or electrochemically deposited in the pores of a 80—90% porous sintered nickel substrate that may also contain a reinforcing grid. [Pg.544]

Other processes have been developed in which the impregnation is accompHshed in one or two steps the most promising is electro deposition directiy from nitrate solutions having pH controlled at 4—5. After electro deposition, the plaques are either cathodicaHy polarized in sodium hydroxide solution or electrochemically formed in sodium hydroxide to eliminate all traces of nitrate. The latter steps must proceed at low current densities to avoid blistering and shedding of the loaded plaques. [Pg.548]


See other pages where Deposition hydroxide is mentioned: [Pg.345]    [Pg.111]    [Pg.1362]    [Pg.28]    [Pg.775]    [Pg.345]    [Pg.111]    [Pg.1362]    [Pg.28]    [Pg.775]    [Pg.193]    [Pg.1069]    [Pg.207]    [Pg.242]    [Pg.473]    [Pg.426]    [Pg.230]    [Pg.476]    [Pg.498]    [Pg.164]    [Pg.338]    [Pg.345]    [Pg.10]    [Pg.27]    [Pg.522]    [Pg.132]    [Pg.133]    [Pg.168]    [Pg.521]    [Pg.25]    [Pg.327]    [Pg.164]    [Pg.346]    [Pg.206]   
See also in sourсe #XX -- [ Pg.53 , Pg.54 ]




SEARCH



© 2024 chempedia.info