Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnesium in seawater

There is some debate about what controls the magnesium concentration in seawater. The main input is rivers. The main removal is by hydrothermal processes (the concentration of Mg in hot vent solutions is essentially zero). First, calculate the residence time of water in the ocean due to (1) river input and (2) hydro-thermal circulation. Second, calculate the residence time of magnesium in seawater with respect to these two processes. Third, draw a sketch to show this box model calculation schematically. You can assume that uncertainties in river input and hydrothermal circulation are 5% and 10%, respectively. What does this tell you about controls on the magnesium concentration Do these calculations support the input/removal balance proposed above Do any questions come to mind Volume of ocean = 1.4 x 10 L River input = 3.2 x lO L/yr Hydrothermal circulation = 1.0 x 10 L/yr Mg concentration in river water = 1.7 X 10 M Mg concentration in seawater = 0.053 M. [Pg.273]

Atomic absorption spectrophotometry [165,166] has been used in the determination of calcium and magnesium in seawater. [Pg.155]

Atomic absorption spectrometry has been used to determine magnesium in seawater [413-415]. [Pg.192]

Nygaard [752] has evaluated the application of the Spectraspan DC plasma emission spectrometer as an analysis tool for the determination of trace heavy metals in seawater. Sodium, calcium, and magnesium in seawater are shown to increase both the background and elemental line emission intensities. Optimum analytical emission lines and detection limits for seven elements are reported in Table 5.8. [Pg.265]

The numerator of the right side is the product of measured total concentrations of calcium and carbonate in the water—the ion concentration product (ICP). If n = 1 then the system is in equilibrium and should be stable. If O > 1, the waters are supersaturated, and the laws of thermodynamics would predict that the mineral should precipitate removing ions from solution until n returned to one. If O < 1, the waters are undersaturated and the solid CaCOa should dissolve until the solution concentrations increase to the point where 0=1. In practice it has been observed that CaCOa precipitation from supersaturated waters is rare probably because of the presence of the high concentrations of magnesium in seawater blocks nucleation sites on the surface of the mineral (e.g., Morse and Arvidson, 2002). Supersaturated conditions thus tend to persist. Dissolution of CaCOa, however, does occur when O < 1 and the rate is readily measurable in laboratory experiments and inferred from pore-water studies of marine sediments. Since calcium concentrations are nearly conservative in the ocean, varying by only a few percent, it is the apparent solubility product, and the carbonate ion concentration that largely determine the saturation state of the carbonate minerals. [Pg.3154]

Precipitation of Calcareous Deposits. The natural presence of calcium and magnesium in seawater has been advantageously used to coat internal walls of vessels such as ballast tanks with a protective film of calcareous deposits. These films, once they are formed by the cathodic polarization of metal surfaces in seawater, greatly reduce the current density needed to maintain a prescribed cathodic potential. For most cathodic surfaces in aerated waters, the main reduction reaction is described by Eq. (8.4) ... [Pg.280]

Occurrence. Magnesium bromide [7789-48-2] MgBr2, is found in seawater, some mineral springs, natural brines, inland seas and lakes such as the Dead Sea and the Great Salt Lake, and salt deposits such as the Stassfurt deposits. In seawater, it is the primary source of bromine (qv). By the action of chlorine gas upon seawater or seawater bitterns, bromine is formed (see Chemicals frombrine). [Pg.340]

In seawater—dolime and hrine—dolime processes, calcined dolomite or dolime, CaO MgO, is used as a raw material (Table 9). Dolime typically contains 58% CaO, 41% MgO, and less than 1% combined Si02, P O, and CO2 where R is a trivalent metal ion, eg, Al " or Fe " ( 4). Roughly one-half of the magnesia is provided by the magnesium salts in the seawater or brine and the other half is from dolime (75). Plant size is thus reduced using dolime and production cost is probably lower. [Pg.346]

Chlorine. Chlorine, the material used to make PVC, is the 20th most common element on earth, found virtually everywhere, in rocks, oceans, plants, animals, and human bodies. It is also essential to human life. Eree chlorine is produced geothermally within the earth, and occasionally finds its way to the earth s surface in its elemental state. More usually, however, it reacts with water vapor to form hydrochloric acid. Hydrochloric acid reacts quickly with other elements and compounds, forming stable compounds (usually chloride) such as sodium chloride (common salt), magnesium chloride, and potassium chloride, all found in large quantities in seawater. [Pg.508]

Obtaining maximum performance from a seawater distillation unit requires minimising the detrimental effects of scale formation. The term scale describes deposits of calcium carbonate, magnesium hydroxide, or calcium sulfate that can form ia the brine heater and the heat-recovery condensers. The carbonates and the hydroxide are conventionally called alkaline scales, and the sulfate, nonalkaline scale. The presence of bicarbonate, carbonate, and hydroxide ions, the total concentration of which is referred to as the alkalinity of the seawater, leads to the alkaline scale formation. In seawater, the bicarbonate ions decompose to carbonate and hydroxide ions, giving most of the alkalinity. [Pg.241]

Seawater muds are commonly used on offshore locations, which eliminate the necessity of transporting large quantities of freshwater to the drilling location. The other advantage of seawater muds is their inhibition to the hydration and dispersion of clays, because of the salt concentration in seawater. The typical composition of seawater is presented in Table 4-48 most of the hardness of seawater is due to magnesium. [Pg.670]

Thus brucite (Mg(OH)2) is also commonly found on surfaces under cathodic protection in seawater. Because more hydroxyl ions (higher pH) are required to cause magnesium hydroxide to precipitate, the magnesium is virtually always found in the calcareous deposits associated with calcium and its presence is an indicator of a high interfacial pH and thus either high cathodic current densities or relatively poor seawater refreshment. [Pg.129]

It is sometimes possible to separate different cations from a solution by adding a soluble salt containing an anion with which they form insoluble salts. For example, seawater is a mixture of many different ions. It is possible to precipitate magnesium ions from seawater by adding hydroxide ions. However, other cations are also present in seawater. Their individual concentrations and the relative solubilities of their hydroxides determine which will precipitate first if a certain amount of hydroxide is added. Optimum separation of two compounds is achieved when Qsp exceeds the Ksp of one species but is less than the Ksp of the second species. Example 11.11 illustrates a strategy for predicting the order of precipitation. [Pg.591]

Fig. 14.20). Magnesium occurs in seawater and as the mineral dolomite, CaCOyMgCO,. Calcium also occurs as CaCO in compressed deposits of the shells of ancient marine organisms and exoskeletons of tiny one-celled organisms these deposits include limestone, calcite, and chalk (a softer variety of calcium carbonate). [Pg.713]

Write the chemical equation for (a) the industrial preparation of magnesium metal from the magnesium chloride in seawater (b) the action of water on calcium metal. [Pg.739]

The average composition of seawater is shown in Table 1-3. Seawater muds have sodium chloride concentrations above 10,000 ppm. Most of the hardness in seawater is caused by magnesium. [Pg.4]

Complexation of fluoride by metal ions in seawater has previously been overcome by the addition of TISAB solution. The reagent is presumed to release the bound fluoride by preferential complexation of the metal ions with EDTA type ligands present in the TISAB. Examination of the metal ions present in seawater [66,67] suggests that magnesium is the major species forming fluoride complexes. Theoretical calculations demonstrate that even this species is unlikely to interfere. [Pg.73]

Ke and Regier [71] have described a direct potentiometric determination of fluoride in seawater after extraction with 8-hydroxyquinoline. This procedure was applied to samples of seawater, fluoridated tap-water, well-water, and effluent from a phosphate reduction plant. Interfering metals, e.g., calcium, magnesium, iron, and aluminium were removed by extraction into a solution of 8-hydroxyquinoline in 2-butoxyethanol-chloroform after addition of glycine-sodium hydroxide buffer solution (pH 10.5 to 10.8). A buffer solution (sodium nitrate-l,2-diamino-cyclohexane-N,N,N. AT-tetra-acetic acid-acetic acid pH 5.5) was then added to adjust the total ionic strength and the fluoride ions were determined by means of a solid membrane fluoride-selective electrode (Orion, model 94-09). Results were in close agreement with and more reproducible than those obtained after distillation [72]. Omission of the extraction led to lower results. Four determinations can be made in one hour. [Pg.75]

Bermejo-Barrera et al. [64] studied the use of lanthanum chloride and magnesium nitrate as modifiers for the electrothermal atomic spectrometric determination of p,g/l levels of arsenic in seawater. [Pg.138]

Campbell and Ottaway [136] also used selective volatilisation of the cadmium analyte to determine cadmium in seawater. They could detect 0.04 pg/1 cadmium (2pg in 50 pi) in seawater. They dried at 100 °C and atomised at 1500 °C with no char step. Cadmium was lost above 350 °C. They could not use ammonium nitrate because the char temperature required to remove the ammonium nitrate also volatilised the cadmium. Sodium nitrate and sodium and magnesium chloride salts provided reduced signals for cadmium at much lower concentrations than their concentration in seawater if the atomisation temperature was in excess of 1800 °C. The determination required lower atomisation temperatures to avoid atomising the salts. Even this left the magnesium interference, which required the method of additions. [Pg.147]

The chemiluminescence technique has been used to determine trivalent chromium in seawater. Chang et al. [187] showed Luminol techniques for determination of chromium (III) were hampered by a salt interference, mainly due to magnesium ions. Elimination of this interference is achieved by seawater dilution and utilising bromide ion chemiluminescence signal enhancement (Fig. 5.7). The chemiluminescence results were comparable with those obtained by a graphite furnace flameless atomic absorption analysis for the total chromium present in samples. The detection limit is 3.3 x 10 9 mol/1 (0.2 ppb) for seawater with a salinity of 35%, with 0.5 M bromide enhancement. [Pg.159]

Polarography has also been applied to the determination of potassium in seawater [535]. The sample (1 ml) is heated to 70 °C and treated with 0.1 M sodium tetraphenylborate (1 ml). The precipitated potassium tetraphenylborate is filtered off, washed with 1% acetic acid, and dissolved in 5 ml acetone. This solution is treated with 3 ml 0.1 M thallium nitrate and 1.25 ml 2M sodium hydroxide, and the precipitate of thallium tetraphenylborate is filtered off. The filtrate is made up to 25 ml, and after de-aeration with nitrogen, unconsumed thallium is determined polarographically. There is no interference from 60 mg sodium, 0.2 mg calcium or magnesium, 20 pg barium, or 2.5 pg strontium. Standard eviations at concentrations of 375, 750, and 1125 pg potassium per ml were 26.4, 26.9, and 30.5, respectively. Results agreed with those obtained by flame photometry. [Pg.210]


See other pages where Magnesium in seawater is mentioned: [Pg.156]    [Pg.192]    [Pg.279]    [Pg.351]    [Pg.239]    [Pg.3140]    [Pg.222]    [Pg.598]    [Pg.254]    [Pg.328]    [Pg.156]    [Pg.192]    [Pg.279]    [Pg.351]    [Pg.239]    [Pg.3140]    [Pg.222]    [Pg.598]    [Pg.254]    [Pg.328]    [Pg.313]    [Pg.338]    [Pg.174]    [Pg.178]    [Pg.182]    [Pg.120]    [Pg.372]    [Pg.671]    [Pg.676]    [Pg.381]    [Pg.141]    [Pg.142]    [Pg.144]    [Pg.153]    [Pg.154]    [Pg.171]    [Pg.171]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 ]

See also in sourсe #XX -- [ Pg.765 ]

See also in sourсe #XX -- [ Pg.792 ]




SEARCH



In seawater

Seawater magnesium

© 2024 chempedia.info