Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macrocyclic antibiotic CSP

One significant commercial development which has been taking place is that it has been demonstrated that macrocyclic antibiotic CSP may be used successfully with normal phase solvents, mixtures of n-hexane and ethanol being the most frequently used. Most of the illustrative examples cited in the commercial literature feature non-polar analytes not all of which are of pharmaceutical interest (Fig. 3.6) but nonetheless it is a good selling point that these CSP may be used with the complete range of mobile phase polarities. [Pg.88]


The macrocyclic antibiotic-based CSPs have not been used extensively in SFC. Two macrocyclic antibiotic CSPs, Chirobiotic T and Chirobiotic V, were included in a study of various CSPs in SFC. At least partial resolution of approximately half of the 44 test compounds could be obtained on these two CSPs in SFC [63]. A high concentration of modifier was necessary to elute some of the analytes. Enantioreso-lution of derivatized amino acids was also demonstrated in the same study. Flowever, a complex modifier comprised of methanol, water, and glycerol was required for separations performed on the Chirobiotic T CSP. The separation of coumachlor enantiomers on a vancomycin-based CSP (Chirobiotic V) in SFC is illustrated in Fig. 12-5 [32]. [Pg.310]

The PO mode is a specific elution condition in HPLC enantiomer separation, which has received remarkable popularity especially for macrocyclic antibiotics CSPs and cyclodextrin-based CSPs. It is also applicable and often preferred over RP and NP modes for the separation of chiral acids on the cinchonan carbamate-type CSPs. The beneficial characteristics of the PO mode may arise from (i) the offset of nonspecific hydrophobic interactions, (ii) the faster elution speed, (iii) sometimes enhanced enan-tioselectivities, (iv) favorable peak shapes due to improved diffusive mass transfer in the intraparticulate pores, and last but not least, (v) less stress to the column, which may extend the column lifetime. Hence, it is rational to start separation attempts with such elution conditions. Typical eluents are composed of methanol, acetonitrile (ACN), or methanol-acetonitrile mixtures and to account for the ion-exchange retention mechanism the addition of a competitor acid that acts also as counterion (e.g., 0.5-2% glacial acetic acid or 0.1% formic acid) is required. A good choice for initial tests turned out to be a mobile phase being composed of methanol-glacial acetic acid-ammonium acetate (98 2 0.5 v/v/w). [Pg.11]

Enantioseparation of nine amphetamine derivatives, methorphan, and propoxyphene was studied by comparing two different CSP typologies, a macrocyclic antibiotic CSP (vancomycin) and a native P-cyclodextrin CSP [123]. The suitability of the eluent systems to ESI interfacing was discussed, and a tandem mass spectrometric (MS/MS) detection method was developed. [Pg.150]

Three types of macrocyclic antibiotic CSPs have been commercialized by Astec (Whippany, New York) and show complementary enantioselec-tivity Chirobiotic V (selector vancomycin), Chirobiotic T (teicoplanin)... [Pg.474]

Fig. 3.6 Illustrative analytes resolved on macrocyclic antibiotic CSP in the straight phase mode... Fig. 3.6 Illustrative analytes resolved on macrocyclic antibiotic CSP in the straight phase mode...
This relatively new class of CSPs incorporates glycopeptides attached covalently to silica gel. These CSPs can be used in the normal phase, reversed phase, and polar organic modes in LC [62]. Various functional groups on the macrocyclic antibiotic molecule provide opportunities for tt-tt complexation, hydrogen bonding, and steric interactions between the analyte and the chiral selector. Association of the analyte... [Pg.309]

Vancomycin was the first macrocyclic antibiotic evaluated as selector for the synthesis of HPLC chiral stationary phases (CSPs) [7], along with rifamycin B (among ansamycins) and thiostrepton (among polypeptides). [Pg.114]

Avoparcin was the fourth macrocyclic antibiotic evaluated as selector for the synthesis of HPLC CSPs [37]. [Pg.118]

The first consideration when investigating HPLC method development protocols is the chemical structure of the analyte, in particular, the presence of functional groups capable of interacting with the stationary phase and containing or in the vicinity of the stereogenic elements [79]. Since the natural target of macrocyclic antibiotics is the A-acyl-D-alanyl-D-alanine terminus (see Section 2.1), the early choice of suitable substrates for this kind of CSPs was that of amino acids [45]. However, it turned out that the macrocyclic CSPs were very successful not only in amino acids enantioresolution, but also in the separation of a wide variety of different structures. [Pg.130]

Cyclic amines (including local anesthetic drugs) and amides were among the first classes of chiral compounds investigated in the early stages of the application of macrocyclic antibiotics as chiral selectors therefore, they were screened on vancomycin [7], teicoplanin [30], and ristocetin A [33] CSPs, under RPmode systems. Cyclic imides (including barbiturates, piperidine-2,6-diones, and mephenytoin) have been separated on a vancomycin CSP [157], under NP and RP mobile phase conditions. [Pg.144]

Different classifications for the chiral CSPs have been described. They are based on the chemical structure of the chiral selectors and on the chiral recognition mechanism involved. In this chapter we will use a classification based mainly on the chemical structure of the selectors. The selectors are classified in three groups (i) CSPs with low-molecular-weight selectors, such as Pirkle type CSPs, ionic and ligand exchange CSPs, (ii) CSPs with macrocyclic selectors, such as CDs, crown-ethers and macrocyclic antibiotics, and (iii) CSPs with macromolecular selectors, such as polysaccharides, synthetic polymers, molecular imprinted polymers and proteins. These different types of CSPs, frequently used for the analysis of chiral pharmaceuticals, are discussed in more detail later. [Pg.456]

Armstrong et al. ° first introduced chiral stationary phases based on macrocyclic antibiotics. Vancomycin, ristocetin A, teicoplanin, avoparcin, rifamycin B and thiostrepton are used as chiral selectors. They posses a broad enantiorecognition range, similar to protein based CSPs. However, CSPs based on macrocyclic antibiotics show higher stability and capacities.Underivatized amino acids, N-derivatized amino-acids, acidic compounds, neutrals, amides, esters and amines can be separated.The first four of the above-mentioned chiral selectors appear to have the largest enantiorecognition range.The selectors can also be derivatized to obtain different enantioselectivities. [Pg.472]

Brush-type, proteins, CDs, natural molecular imprint-based polymers (MIP), and macrocyclic antibiotics have been immobilized as chiral selectors on packed-CEC columns. Zheng and Shamsi demonstrated the possibility of using chiral CEC—ESI/MS with a commercially packed column for the determination of warfarin enantiomers in human plasma using coumachlor as an internal standard (IS). Robustness of this chiral CEC capillary was recently improved by a novel procedure and applied for the simultaneous enantiosepara-tion of height /1-blockers with multimodal CSP using different combinations of vancomycin and teicoplanin, as presented in Figure 5. ... [Pg.492]

The use of macrocyclic antibiotics as chiral selectors for HPLC was first proposed by Armstrong et al. [50] in 1994. The most successful of the CSPs are based on the glycopeptide antibiotics vancomycin, teicoplanin and ristocetin A and are commercially available through Advanced Separation Technologies Inc. (Astec Inc.) as Chirobiotic V , Chirobiotic 1 and Chirobiotic R , respectively. More recently, a number of other derivatives of these antibiotics have also been developed offering different stereoselectivities. A comprehensive handbook is now available from Astec Inc. [51 ] alongside a number of recent review articles... [Pg.54]

The most frequently used CSPs for biological applications in the reversed-phase mode are based on macrocyclic antibiotics, proteins, or oligosaccharides, but some of the applications utilize phases based on polysaccharides, low-molecular-weight selectors, crown ethers, or columns based on immunoaffinity techniques (Table 17.5). [Pg.523]

Although the macrocyclic glycopeptide antibiotic CSPs are very effective for the chiral resolution of many racemic compounds, their use as chiral mobile phase additives is very limited. Only a few reports are available on this mode of chiral resolution. It is interesting to note that these antibiotics absorb UV radiation therefore, the use of these antibiotics as the CMPAs is restricted. However, Armstrong et al. used vancomycin as the CMPA for the chiral resolution of amino acids by thin-layer chromatography, which will be discussed in Section 10.7. [Pg.363]

Since the introduction of CSPs based on macrocyclic antibiotics by Armstrong in 1994 [278], they have gained much interest owing to their (i) broad spectrum of applicability, (ii) complementary activity of the different types of macrocyclic antibiotics, (iii) multiple modes of operation (normal-phase, reversed-phase, polar-otganic phase modes) with complementary enantioselectivities in each mode, and (iv) the ability to separate the enantiomers of underivatized a- and P-amino acids. [Pg.392]


See other pages where Macrocyclic antibiotic CSP is mentioned: [Pg.139]    [Pg.151]    [Pg.54]    [Pg.360]    [Pg.86]    [Pg.88]    [Pg.89]    [Pg.96]    [Pg.96]    [Pg.98]    [Pg.102]    [Pg.139]    [Pg.151]    [Pg.54]    [Pg.360]    [Pg.86]    [Pg.88]    [Pg.89]    [Pg.96]    [Pg.96]    [Pg.98]    [Pg.102]    [Pg.7]    [Pg.138]    [Pg.144]    [Pg.24]    [Pg.68]    [Pg.151]    [Pg.159]    [Pg.159]    [Pg.187]    [Pg.352]    [Pg.1023]    [Pg.351]   


SEARCH



Antibiotic CSP

Antibiotic CSPs

CSPs

Macrocyclic antibiotics

© 2024 chempedia.info