Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macrocyclic Glycopeptide Antibiotic CSPs

Due to the complex stmcture of these antibiotics, most of them function equally well in reversed, normal and modified polar ionic phases. All three solvent modes generally show different selectivities with different analytes. Sometimes, equivalent separations are obtained in both the normal and the reversed phase mode. This ability to operate in two different solvent modes is an advantage in determining the best preparative methodology where sample solubility is a key issue. In normal phase chromatography, the most commonly used solvents are typically hexane, ethanol, methanol and so on. The optimization of chiral resolution is achieved by adding some other organic solvent, such as acetic acid, tetrahydrofuran (THF), diethylamine (DBA) or triethylamine (TEA) [50, 51]. [Pg.251]

A simplified approach has been proven to be very effective for the resolution of a broad spectmm of racemates. The first consideration in this direction is the stmcture of the analytes. If the compound has more than [Pg.251]

Guillaume et al. [30] studied the effect of pH on the chiral resolution of phenoxypropionic acid herbicides. [Pg.253]


Although the macrocyclic glycopeptide antibiotic CSPs are very effective for the chiral resolution of many racemic compounds, their use as chiral mobile phase additives is very limited. Only a few reports are available on this mode of chiral resolution. It is interesting to note that these antibiotics absorb UV radiation therefore, the use of these antibiotics as the CMPAs is restricted. However, Armstrong et al. used vancomycin as the CMPA for the chiral resolution of amino acids by thin-layer chromatography, which will be discussed in Section 10.7. [Pg.363]

The most popular and commonly used chiral stationary phases (CSPs) are polysaccharides, cyclodextrins, macrocyclic glycopeptide antibiotics, Pirkle types, proteins, ligand exchangers, and crown ether based. The art of the chiral resolution on these CSPs has been discussed in detail in Chapters 2-8, respectively. Apart from these CSPs, the chiral resolutions of some racemic compounds have also been reported on other CSPs containing different chiral molecules and polymers. These other types of CSP are based on the use of chiral molecules such as alkaloids, amides, amines, acids, and synthetic polymers. These CSPs have proved to be very useful for the chiral resolutions due to some specific requirements. Moreover, the chiral resolution can be predicted on the CSPs obtained by the molecular imprinted techniques. The chiral resolution on these miscellaneous CSPs using liquid chromatography is discussed in this chapter. [Pg.315]

Figure 4.16 Chemical structures of the macrocyclic glycopeptide antibiotics (a) vancomycin, (b) teicoplanin, (c) avoparcin, (d) ristocetin A, that have been used as chiral selectors in CSPs for HPLC. Reproduced from Ward and Farris, J. Chromatogr. A 906 (2001), copyright (2001), with permission from Elsevier. Figure 4.16 Chemical structures of the macrocyclic glycopeptide antibiotics (a) vancomycin, (b) teicoplanin, (c) avoparcin, (d) ristocetin A, that have been used as chiral selectors in CSPs for HPLC. Reproduced from Ward and Farris, J. Chromatogr. A 906 (2001), copyright (2001), with permission from Elsevier.
Macrocyclic glycopeptide antibiotic based CSPs Chirobiotic R, Chirobiotic T, Chirobiotic V, Chirobiotic TAG and Chirobiotic modified V Advanced Separation Technologies, Inc., Whippany, NJ, USA... [Pg.231]

Macrocyclic glycopeptides. The first of these CSPs - based on the cavity of the antibiotic vancomycin bound to silica - was introduced by Armstrong [25]. Two more polycyclic antibiotics teicoplanin and ristocetin A, were also demonstrated later. These selectors are quite rugged and operate adequately in both normal-phase and reversed-phase chromatographic modes. However, only a limited number of such selectors is available, and their cost is rather high. [Pg.58]

Since the natural target of macrocyclic antibiotics is the A-acyl-D-alanyl-D-alanine terminus (see Section 2.1), the early choice of suitable substrates for this kind of CSPs was that of amino acids [45]. However, it turned out that the macrocyclic CSPs were very successful not only in amino acids enantioresolution, but also in the separation of a wide variety of different structures. The early stages of application of macrocyclic antibiotics have been surveyed in the different fields of chromatography [1,2]. A summary of the different categories of chiral compounds separated by HPLC on glycopeptides containing CSPs is reported in Table 2.3. [Pg.138]

The use of macrocyclic antibiotics as chiral selectors for HPLC was first proposed by Armstrong et al. [50] in 1994. The most successful of the CSPs are based on the glycopeptide antibiotics vancomycin, teicoplanin and ristocetin A and are commercially available through Advanced Separation Technologies Inc. (Astec Inc.) as Chirobiotic V , Chirobiotic 1 and Chirobiotic R , respectively. More recently, a number of other derivatives of these antibiotics have also been developed offering different stereoselectivities. A comprehensive handbook is now available from Astec Inc. [51 ] alongside a number of recent review articles... [Pg.54]

In addition to the vancomycin and teicoplanin CSPs, ristocetin A (Chirobiotic R) [289] and recently avoparcin [280] have been evaluated as novel chiral SOs and CSPs. It turned out that within the large family of macrocyclic antibiotics complementarity of enantioselectivity exists for different glycopeptides. As a consequence, very often it is possible to obtain a complete resolution by switching to a congeneric antibiotic CSP, if after optimization no baseline, but partial. separation can be achieved on a certain macrocyclic antibiotic type CSP (see Fig. 9.22). It can be expected that the enantioselectivity potential of closely related antibiotics will be further exploited in the future leading to an increase in the number of macrocyclic antibiotic type CSPs. [Pg.403]

Tesarova and Bosakova [58] proposed an HPLC method for the enantio-selective separation of some phenothiazine and benzodiazepine derivatives on six different chiral stationary phases (CSPs). These selected CSPs, with respect to the structure of the separated compounds, were either based on b-CD chiral selectors (underivatized (J>-CD and hydroxypropyl ether (3-CD) or on macrocyclic antibiotics (vancomycin, teicoplanin, teicoplanin aglycon and ristocetin A). Measurements were carried out in a reversed-phase separation mode. The influence of mobile phase composition on retention and enantio-selective separation was studied. Enantioselective separation of phenothiazine derivatives, including levopromazine (LPZ), promethazine and thioridazine, was relatively difficult to achieve, but it was at least partly successful with both types of CSPs used in this work (CD-based and glycopeptide-based CSP), except for levomepromazine for which only the [CCD-based CSP was suitable. [Pg.171]

The antibiotics vancomycin (shown in Table 1), teicoplanin, and ristocetin A can be bonded to silica, giving a unique class of macrocyclic glycopeptide CSPs. They can be used in the normal-phase mode with a nonpolar eluent as well as in the reversed-phase mode with an aqueous eluent. They show unique selectivity for a large number of analytes. Figure 3 gives an example with the separation of the antidepressant citalopram and its metabolites on a vancomycin CSP. [Pg.2609]

This relatively new class of CSPs incorporates glycopeptides attached covalently to silica gel. These CSPs can be used in the normal phase, reversed phase, and polar organic modes in LC [62]. Various functional groups on the macrocyclic antibiotic molecule provide opportunities for tt-tt complexation, hydrogen bonding, and steric interactions between the analyte and the chiral selector. Association of the analyte... [Pg.309]

Non steroidal antiinflammatory drugs were among the first classes of chiral compounds investigated in the early stages of the application of macrocyclic antibiotics as chiral selectors therefore, they were screened on vancomycin [7], teicoplanin [30], ristocetin A [33] CSPs under RPmode systems, and on avoparcin CSP under NP mode systems [37]. The enantioresolution of a variety of pro fens was later reported on commercially available vancomycin CSPs [128, 168], and recently on a ME-TAG CSP [58]. Ibuprofen enantiomers were also separated on a CDP-1-containing CSP [55]. Glycopeptide A-40,926 CSP was successfully employed in the analytical and semipreparative separation of 2-arylpropionic acids [63]. [Pg.147]


See other pages where Macrocyclic Glycopeptide Antibiotic CSPs is mentioned: [Pg.249]    [Pg.249]    [Pg.230]    [Pg.253]    [Pg.265]    [Pg.274]    [Pg.447]    [Pg.204]    [Pg.130]    [Pg.139]    [Pg.151]    [Pg.151]    [Pg.177]    [Pg.344]    [Pg.24]    [Pg.55]    [Pg.141]   


SEARCH



Antibiotic CSP

Antibiotic CSPs

CSPs

CSPs , glycopeptides

Glycopeptide

Glycopeptide macrocycle antibiotics

Glycopeptide macrocyclic antibiotics

Glycopeptides

Glycopeptides macrocyclic

Macrocyclic antibiotics

© 2024 chempedia.info