Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization living polymers

When a monomer such as acrylonitrile is polymerized in a poor solvent, macroradicals precipitate as they are formed. Since these are living polymers, polymerization continues as more acrylonitrile diffuses into the precipitated particles. This heterogeneous solution polymerization has been called precipitation polymerization. [Pg.187]

The present section analyzes the above concepts in detail. There are many different mathematical methods for analyzing molecular weight distributions. The method of moments is particularly easy when applied to a living polymer polymerization. Equation (13.30) shows the propagation reaction, each step of which consumes one monomer molecule. Assume equal reactivity. Then for a batch polymerization,... [Pg.480]

The molecular weight distributions reported in Table I are seen to be quite broad for a "living polymer" polymerization reaction, although for two of the three polymerization reactions in this table tfor R2 = C2H5 and C3H7), the observed, Mj Qp, and calculated,... [Pg.107]

Chain reactions do not go on forever. The fog may clear and the improved visibility ends the succession of accidents. Neutron-scavenging control rods may be inserted to shut down a nuclear reactor. The chemical reactions which terminate polymer chain reactions are also an important part of the polymerization mechanism. Killing off the reactive intermediate that keeps the chain going is the essence of these termination reactions. Some unusual polymers can be formed without this termination these are called living polymers. [Pg.346]

In ionic polymerizations termination by combination does not occur, since all of the polymer ions have the same charge. In addition, there are solvents such as dioxane and tetrahydrofuran in which chain transfer reactions are unimportant for anionic polymers. Therefore it is possible for these reactions to continue without transfer or termination until all monomer has reacted. Evidence for this comes from the fact that the polymerization can be reactivated if a second batch of monomer is added after the initial reaction has gone to completion. In this case the molecular weight of the polymer increases, since no new growth centers are initiated. Because of this absence of termination, such polymers are called living polymers. [Pg.405]

The first living polymer studied in detail was polystyrene polymerized with sodium naphthalenide in tetrahydrofuran at low temperatures ... [Pg.406]

That the Poisson distribution results in a narrower distribution of molecular weights than is obtained with termination is shown by Fig. 6.11. Here N /N is plotted as a function of n for F= 50, for living polymers as given by Eq. (6.109). and for conventional free-radical polymerization as given by Eq. (6.77). This same point is made by considering the ratio M /M for the case of living polymers. This ratio may be shown to equal... [Pg.410]

Soum and Fontanillet prepared a living polymer of 2-vin yl pyridine using benzyl picolyl magnesium as the initiator. The values of were measured experimentally for polymers prepared with different concentrations of initiator and different initial concentrations of monomer. The results are given below calculate the theoretical molecular weights expected if polymerization proceeds completely from 100% predissociated initiator and compare the theoretical and experimental values ... [Pg.420]

A brief review has appeared covering the use of metal-free initiators in living anionic polymerizations of acrylates and a comparison with Du Font s group-transfer polymerization method (149). Tetrabutylammonium thiolates mn room temperature polymerizations to quantitative conversions yielding polymers of narrow molecular weight distributions in dipolar aprotic solvents. Block copolymers are accessible through sequential monomer additions (149—151) and interfacial polymerizations (152,153). [Pg.170]

The anionic polymerization of methacrylates using a silyl ketene acetal initiator has been termed group-transfer polymerization (GTP). First reported by Du Pont researchers in 1983 (100), group-transfer polymerization allows the control of methacrylate molecular stmcture typical of living polymers, but can be conveniendy mn at room temperature and above. The use of GTP to prepare block polymers, comb-graft polymers, loop polymers, star polymers, and functional polymers has been reported (100,101). [Pg.269]

The observation in 1949 (4) that isobutyl vinyl ether (IBVE) can be polymerized with stereoregularity ushered in the stereochemical study of polymers, eventually leading to the development of stereoregular polypropylene. In fact, vinyl ethers were key monomers in the early polymer Hterature. Eor example, ethyl vinyl ether (EVE) was first polymerized in the presence of iodine in 1878 and the overall polymerization was systematically studied during the 1920s (5). There has been much academic interest in living cationic polymerization of vinyl ethers and in the unusual compatibiUty of poly(MVE) with polystyrene. [Pg.514]

The product, referred to here as S LB, is able to initiate further polymerization. Similar products have been termed living polymers (48). Addition of a second monomer, such as butadiene [106-99-0] gives... [Pg.14]

The earliest SIS block copolymers used in PSAs were nominally 15 wt% styrene, with an overall molecular weight on the order of 200,000 Da. The preparation by living anionic polymerization starts with the formation of polystyryl lithium, followed by isoprene addition to form the diblock anion, which is then coupled with a difunctional agent, such as 1,2-dibromoethane to form the triblock (Fig. 5a, path i). Some diblock material is inherently present in the final polymer due to inefficient coupling. The diblock is compatible with the triblock and acts... [Pg.480]

Generally, the models used for simulation of living polymers can be divided roughly into two classes, focused on static or dynamic properties of the LP or GM. The static models are mainly designed to study equilibrium conformational properties of the polymer chains, critical behavior at the polymerization transition, and molecular weight distribution... [Pg.511]

As discussed in Section 7.3, conventional free radical polymerization is a widely used technique that is relatively easy to employ. However, it does have its limitations. It is often difficult to obtain predetermined polymer architectures with precise and narrow molecular weight distributions. Transition metal-mediated living radical polymerization is a recently developed method that has been developed to overcome these limitations [53, 54]. It permits the synthesis of polymers with varied architectures (for example, blocks, stars, and combs) and with predetermined end groups (e.g., rotaxanes, biomolecules, and dyes). [Pg.329]

GTP is a safe operation. A runaway polymerization can be quickly quenched with a protonic solvent. Since the group transfer polymerization goes to completion, no unwanted toxic monomer remains the silicone group on the living end after hydroxylation is removed as inactive siloxane. The living polymer in GTP is costlier than traditional polymerization techniques because of the stringent reaction conditions and requirements for pure and dry monomers and solvents. It can be used in fabrication of silicon chips, coating of optical fibers, etc. [Pg.42]

To examine potentiality of other ylides and their metal complex containing Sb, As, P, Bi, and Se as new novel initiator in polymer synthesis via living radical polymerization. [Pg.380]

A polymer-bound hindered amine light stabilizer [P-HALS] has been synthesized by terminating the living anionic polymerization of isoprene with 4(2,3-epoxy pro-poxy)-1,2,2,6,6-pentamethylpiperidine followed by hydrogenation of the resulting polymer to E-P copolymer using Zeigler type catalyst [40] ... [Pg.402]

This relation was verified experimentally7 49 and it was shown that the degree of polymerization in a system containing "living polymers is independent of concentrations of initiator or monomer and of temperature. Furthermore, if all the growing centers were formed in a time much shorter than the time of polymerization, a Poisson molecular weight distribution would be obtained. Indeed, by using this technique samples of polystyrene were obtained for which MjMn = 1.04. [Pg.177]

The equilibrium between monomer and living polymer is dynamic and therefore the molecular weight distribution of the polymer will change with time until the equilibrium distribution is reached. This is a peculiar process in which the amount of polymer present in the system, as well as its number average molecular weight is constant. This means also that, the number of polymeric... [Pg.182]

Szwarc, M. Thermodynamics of Polymerization with Special Emphasis on Living Polymers. Vol. 4, pp. 457—495. [Pg.161]

Most radicals are transient species. They (e.%. 1-10) decay by self-reaction with rates at or close to the diffusion-controlled limit (Section 1.4). This situation also pertains in conventional radical polymerization. Certain radicals, however, have thermodynamic stability, kinetic stability (persistence) or both that is conferred by appropriate substitution. Some well-known examples of stable radicals are diphenylpicrylhydrazyl (DPPH), nitroxides such as 2,2,6,6-tetramethylpiperidin-A -oxyl (TEMPO), triphenylniethyl radical (13) and galvinoxyl (14). Some examples of carbon-centered radicals which are persistent but which do not have intrinsic thermodynamic stability are shown in Section 1.4.3.2. These radicals (DPPH, TEMPO, 13, 14) are comparatively stable in isolation as solids or in solution and either do not react or react very slowly with compounds usually thought of as substrates for radical reactions. They may, nonetheless, react with less stable radicals at close to diffusion controlled rates. In polymer synthesis these species find use as inhibitors (to stabilize monomers against polymerization or to quench radical reactions - Section 5,3.1) and as reversible termination agents (in living radical polymerization - Section 9.3). [Pg.14]


See other pages where Polymerization living polymers is mentioned: [Pg.657]    [Pg.236]    [Pg.269]    [Pg.497]    [Pg.517]    [Pg.346]    [Pg.172]    [Pg.189]    [Pg.510]    [Pg.329]    [Pg.330]    [Pg.332]    [Pg.736]    [Pg.147]    [Pg.181]    [Pg.183]    [Pg.159]    [Pg.161]    [Pg.71]    [Pg.6]    [Pg.7]    [Pg.387]   
See also in sourсe #XX -- [ Pg.479 ]




SEARCH



Anionic polymerization living polymers

Copolymers living polymer polymerizations

Engineering of Side Chain Liquid Crystalline Polymers by Living Polymerizations

Hyperbranched polymer living polymerization

Ionic polymerization. Living polymers

Liquid crystalline polymers by living polymerization

Living Polymerizations used to Synthesize Side Chain Liquid Crystalline Polymers

Living polymerization

Living polymers ring opening metathesis polymerization

Living radical polymerization dendritic polymers

Living radical polymerization different polymer architectures

Living radical polymerization graft polymer

Living radical polymerization hyperbranched polymers

Living radical polymerization star polymer

Living radical polymerization well-defined polymers

Miktoarm Star Polymers by Other Methodologies Based on Living Anionic Polymerization

Polymer backbones, living polymerization

Polymer live

Polymer living/controlled chain polymerization

Polymers living

Polystyrene, living polymer anionic polymerization

Polystyrene, living polymer dispersion polymerization

Precursor polymers, living polymerization

Tailor-made Polymers by Living Polymerization - Optimization

© 2024 chempedia.info