Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Living radical polymerization well-defined polymers

Since the discovery of living polymerizations by Swarc in 1956 [1], the area of synthesis and application of well-defined polymer structures has been developed. The livingness of a polymerization is defined as the absence of termination and transfer reactions during the course of the polymerization. If there is also fast initiation and chain-end fidelity, which are prerequisites for the so-called controlled polymerization, well-defined polymers are obtained that have a narrow molar mass distribution as well as defined end groups. Such well-defined polymers can be prepared by various types of living and controlled polymerization techniques, including anionic polymerization [2], controlled radical polymerization [3-5], and cationic polymerization [6, 7]. [Pg.163]

The development of living radical polymerization has provided the capability for the polymer chemist to synthesize a wide range of novel and well-defined structures. The transformation of this capability into commercial outcomes and novel products has only just commenced. [Pg.564]

The tendency of nitrones to react with radicals has been widely used in new synthetic routes to well-defined polymers with low polydispersity. The recent progress in controlled radical polymerization (CRP), mainly nitroxide-mediated polymerization (NMP) (695), is based on the direct transformation of nitrones to nitroxides and alkoxyamines in the polymerization medium (696, 697). In polymer chemistry, NMP has become popular as a method for preparing living polymers (698) under mild, chemoselective conditions with good control over both, the polydispersity and molecular weight. [Pg.295]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

Hawker et al. 2001 Hawker and Wooley 2005). Recent developments in living radical polymerization allow the preparation of structurally well-defined block copolymers with low polydispersity. These polymerization methods include atom transfer free radical polymerization (Coessens et al. 2001), nitroxide-mediated polymerization (Hawker et al. 2001), and reversible addition fragmentation chain transfer polymerization (Chiefari et al. 1998). In addition to their ease of use, these approaches are generally more tolerant of various functionalities than anionic polymerization. However, direct polymerization of functional monomers is still problematic because of changes in the polymerization parameters upon monomer modification. As an alternative, functionalities can be incorporated into well-defined polymer backbones after polymerization by coupling a side chain modifier with tethered reactive sites (Shenhar et al. 2004 Carroll et al. 2005 Malkoch et al. 2005). The modification step requires a clean (i.e., free from side products) and quantitative reaction so that each site has the desired chemical structures. Otherwise it affords poor reproducibility of performance between different batches. [Pg.139]

A dense polymer brush is obtained using the grafting from techniques. Surface-initiated polymerization in conjunction with a living polymerization technique is one of the most useful synthetic routes for the precise design and functionalization of the surfaces of various solid materials with well-defined polymers and copolymers. Above all, surface-initiated living radical polymerization (LRP) is particularly promising due to its simplicity and versatility and it has been applied for the synthesis of Au NPs. [Pg.149]

New approaches based on the introduction of reactive species into reaction mixtures that tend to cap the growing chains reversibly allow, in many cases, production of well-defined polymers and copolymers with narrow polydispersi-ties. Up to few years ago, such a possibility was unobtainable by a classical free radical process. The proposed principle of control of macroradical reactivity is very interesting conceptually, and represents a very powerful tool to prepare block copolymers with well-controlled structures. However, it is clear that the true living character as demonstrated by some anionic polymerizations is still not obtained and much more work needs to be done to understand and control this new process better. [Pg.105]

The versatility associated with nitroxide-mediated polymerizations, in terms of both monomer choice and initiator structure, also permits a wide variety of other complex macromolecular structures to be prepared. Sherrington201 and Fukuda202 have examined the preparation of branched and cross-linked structures by nitroxide-mediated processes, significantly the living nature of the polymerization permits subtlety different structures to be obtained when compared to traditional free radical processes. In addition, a versatile approach to cyclic polymers has been developed by Hemery203 that relies on the synthesis of nonsymmetrical telechelic macromolecules followed by cyclization of the mutually reactive chain ends. In a similar approach, Chaumont has prepared well-defined polymer networks by the cross-linking of telechelic macromolecules prepared by nitroxide-mediated processes with bifunctional small molecules.204... [Pg.125]

The rapid progress and proliferation of metal-catalyzed living radical polymerization has allowed a variety of vinyl monomers to be polymerized into well-defined polymers of controlled molecular weights and narrow MWDs. Most of them are conjugated monomers such as methacrylates, acrylates, styrenes, acrylonitrile, acrylamides, etc., except dienes, which possess not only alkyl substituents but also aprotic and protic functional groups. This fact attests to the versatility and flexibility of metal catalysis for precision polymerization. [Pg.473]

A similar well-defined graft copolymer consisting of polystyrene main chain and branches (G-7) can be prepared simply via repetition of copper-catalyzed living radical polymerizations.209 Thus, the synthesis starts with the copolymerization of styrene and />(acetoxymethy 1)styrene or />(methoxymethyl)sty-rene, followed by bromination of the substituent into the benzyl bromide moiety, which then initiates the copper-catalyzed radical polymerization of styrene to give graft polymers with 8—14 branches. [Pg.503]

VAc has been successfully polymerized via controlled/ living radical polymerization techniques including nitroxide-mediated polymerization, organometallic-mediated polymerization, iodine-degenerative transfer polymerization, reversible radical addition-fragmentation chain transfer polymerization, and atom transfer radical polymerization. These methods can be used to prepare well-defined various polymer architectures based on PVAc and poly(vinyl alcohol). The copper halide/t is an active ATRP catalyst for VAc, providing a facile synthesis of PVAc and its block copolymers. Further developments of this catalyst will be the improvements of catalytic efficiency and polymerization control. [Pg.155]

Living radical polymerization (LRP) has attracted growing attention as a powerful synthetic tool for well-defined polymers 1,2). The basic concept of LRP is the reversible activation of the dormant species Polymer-X to the propagating radical Polymer (Scheme la) 1-3). A number of activation-deactivation cycles are requisite for good control of chain length distribution. [Pg.160]

Controlled/ living radical polymerization (CLRP) processes are well-established synthetic routes for the production of well-defined, low-molecular weight-dispersity polymers [99]. The types of CLRP processes (initiator-transfer agent-terminator (INIFERTER), atom transfer radical polymerization (ATRP), nitroxide-mediated radical (NMRP) polymerization, reversible addition-fragmentation transfer (RAFT)) and their characteristics are described in Section 3.8 of Chapter 3 and in Section 14.8 of Chapter 14. [Pg.199]

This is therefore the practical requirement for the synthesis of well-defined polymers, such that complete monomer conversion can be reached and the chain ends can be quantitatively functionalized. However, since chain breaking reactions are actually present, such systems are more appropriately labeled controlled polymerizations rather than living polymerizations. In fact, conditions have recently been established for controlled radical polymerizations, even though it is impossible to avoid bimolecu-lar termination [12-20]. The extent of the Tivingness or controllability of a polymerization can be ranked if the individual or relative rate constants of propagation, transfer and termination are known [10, 11]. [Pg.126]

Some special reaction with a particularly designed route can be used to synthesize azo BCs. For instance, a series of poly(vinyl ether)-based azo LCBCs were synthesized by using living cationic polymerization and free-radical polymerization techniques (Serhatli and Serhatli, 1998). As shown in Scheme 12.8, 4.4 -azobis(4-cyano pentanol) (ACP) was used to couple quantitatively two well-defined polymers of LC living poly(vinyl ether), initiated by the methyl trifluor-omethane sulfonate/tetrahydrothiophene system. Then the ACP in the main chain was thermally decomposed to produce polymeric radical, which was used to initiate the polymerization of MMA or styrene to obtain PMMA-based or PS-based azo BCs (AB or ABA types). [Pg.419]


See other pages where Living radical polymerization well-defined polymers is mentioned: [Pg.57]    [Pg.291]    [Pg.224]    [Pg.368]    [Pg.6]    [Pg.211]    [Pg.74]    [Pg.201]    [Pg.114]    [Pg.119]    [Pg.340]    [Pg.21]    [Pg.1]    [Pg.107]    [Pg.114]    [Pg.483]    [Pg.488]    [Pg.11]    [Pg.401]    [Pg.196]    [Pg.39]    [Pg.50]    [Pg.149]    [Pg.358]    [Pg.374]    [Pg.8]    [Pg.16]    [Pg.181]    [Pg.211]    [Pg.216]    [Pg.368]    [Pg.380]    [Pg.80]    [Pg.78]    [Pg.280]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Living polymer polymerizations

Living polymerization

Living radical

Living radical polymerization

Polymer defined

Polymer live

Polymer radicals

Polymers living

Well-defined

Well-defined polymer

© 2024 chempedia.info