Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids dilute solutions

Kalampounias, A. G., Yannopoulos, S. N., Steffen, W., Kirillova, L. I., Kirillov, S. A., Short-time dynamics of glass-forming liquids Phenyl salicylate (salol) in bulk liquid, dilute solution, and confining geometries, J. Chem. Phys., 118, 8340-8349 (2003). [Pg.509]

FIGURE 3-26 Spectra of methanol liquid, dilute solution, and vapor. Dilute solution, 0.1 M in CCI4 or CS2. [From Stuart and Sutherland, J, Chem. Phys. 24, 561 (1956).]... [Pg.129]

Table 3 shows results obtained from a five-component, isothermal flash calculation. In this system there are two condensable components (acetone and benzene) and three noncondensable components (hydrogen, carbon monoxide, and methane). Henry s constants for each of the noncondensables were obtained from Equations (18-22) the simplifying assumption for dilute solutions [Equation (17)] was also used for each of the noncondensables. Activity coefficients for both condensable components were calculated with the UNIQUAC equation. For that calculation, all liquid-phase composition variables are on a solute-free basis the only required binary parameters are those for the acetone-benzene system. While no experimental data are available for comparison, the calculated results are probably reliable because all simplifying assumptions are reasonable the... [Pg.61]

CjHiaNO, [Mc3NCH= CH2] OH. A liquid forming a crystalline trihydrate, It is present free and combined in brain and other animal and vegetable products and is formed as a product of putrefaction of lecithin. It can be prepared synthetically from choline and decomposes easily to trimethylamine. neutralization, heat of The amount of heat evolved when I g equivalent of an acid is neutralized by 1 g equivalent of a base. For strong acids and strong bases in dilute solution the only reaction which occurs is H -h OH ---> H2O and the heat of neutral-... [Pg.272]

Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces. Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces.
The simplest condensed phase VER system is a dilute solution of a diatomic in an atomic (e.g. Ar or Xe) liquid or crystal. Other simple systems include neat diatomic liquids or crystals, or a diatomic molecule bound to a surface. A major step up in complexity occurs with poly atomics, with several vibrations on the same molecule. This feature guarantees enonnous qualitative differences between diatomic and polyatomic VER, and casts doubt on the likelihood of understanding poly atomics by studying diatomics alone. [Pg.3034]

Transfer 25 ml. of this dilute solution by means of a pipette to a conical flask, and add similarly 50 ml. of Ml 10 iodine solution. Now-add 10% sodium hydroxide solution until the liquid becomes pale yeilow in colour, and allow the solution to stand, with occasional shaking, at room temperature for at least 10 minutes. Then acidify with dilute hydrochloric acid (free from chlorine) in order to liberate the remaining iodine. Titrate the latter w ith Mho sodium thiosulphate solution, using starch as an indicator in the usual way. [Pg.458]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

The vibration frequencies of C-H bond are noticeably higher for gaseous thiazole than for its dilute solutions in carbon tetrachloride or tor liquid samples (Table 1-27). The molar extinction coefficient and especially the integrated intensity of the same peaks decrease dramatically with dilution (203). Inversely, the y(C(2jH) and y(C(5(H) frequencies are lower for gaseous thiazole than for its solutions, and still lower than for liquid samples (cf. Table 1-27). [Pg.61]

The properties of several representative liquid-based ion-selective electrodes are presented in Table 11.3. An electrode using a liquid reservoir can be stored in a dilute solution of analyte and needs no additional conditioning before use. The lifetime of an electrode with a PVC membrane, however, is proportional to its exposure to aqueous solutions. For this reason these electrodes are best stored by covering the membrane with a cap containing a small amount of wetted gauze to... [Pg.483]

Table 4. Diffusion Coefficients for Dilute Solutions of Gases in Liquids at 20°C ... Table 4. Diffusion Coefficients for Dilute Solutions of Gases in Liquids at 20°C ...
Solvent Extraction. Liquid—hquid extractioa, well known ia the chemical iadustry, was first used ia extractive metallurgy for the processiag of uranium. When a dilute solution of uranium is contacted with an extractant such as di(2-ethylhexyl) phosphoric acid (D2EHPA) or R2HPO4, dissolved ia... [Pg.171]

The drying mechanisms of desiccants may be classified as foUows Class 1 chemical reaction, which forms either a new compound or a hydrate Class 2 physical absorption with constant relative humidity or vapor pressure (solid + water + saturated solution) Class 3 physical absorption with variable relative humidity or vapor pressure (soHd or liquid + water + diluted solution) and Class 4 physical adsorption. [Pg.505]

II The increment in the free energy, AF, in the reaction of forming the given substance in its standard state from its elements in their standard states. The standard states are for a gas, fugacity (approximately equal to the pressure) of 1 atm for a pure liquid or solid, the substance at a pressure of 1 atm for a substance in aqueous solution, the hyj)othetical solution of unit molahty, which has all the properties of the infinitely dilute solution except the property of concentration. [Pg.239]

Selectivity. The relative separation, or selectivity, Ot of a solvent is the ratio of two components in the extraction-solvent phase divided by the ratio of the same components in the feed-solvent phase. The separation power of a hquid-liquid system is governed by the deviation of Ot from unity, analogous to relative volatility in distillation. A relative separation Ot of 1.0 gives no separation of the components between the two liquid phases. Dilute solute concentrations generally give the highest relative separation factors. [Pg.1453]

The prediction of drop sizes in liquid-liquid systems is difficult. Most of the studies have used very pure fluids as two of the immiscible liquids, and in industrial practice there almost always are other chemicals that are surface-active to some degree and make the pre-dic tion of absolute drop sizes veiy difficult. In addition, techniques to measure drop sizes in experimental studies have all types of experimental and interpretation variations and difficulties so that many of the equations and correlations in the literature give contradictoiy results under similar conditions. Experimental difficulties include dispersion and coalescence effects, difficulty of measuring ac tual drop size, the effect of visual or photographic studies on where in the tank you can make these obseiwations, and the difficulty of using probes that measure bubble size or bubble area by hght or other sample transmission techniques which are veiy sensitive to the concentration of the dispersed phase and often are used in veiy dilute solutions. [Pg.1636]

With a reactive solvent, the mass-transfer coefficient may be enhanced by a factor E so that, for instance. Kg is replaced by EKg. Like specific rates of ordinary chemical reactions, such enhancements must be found experimentally. There are no generalized correlations. Some calculations have been made for idealized situations, such as complete reaction in the liquid film. Tables 23-6 and 23-7 show a few spot data. On that basis, a tower for absorption of SO9 with NaOH is smaller than that with pure water by a factor of roughly 0.317/7.0 = 0.045. Table 23-8 lists the main factors that are needed for mathematical representation of KgO in a typical case of the absorption of CO9 by aqueous mouethauolamiue. Figure 23-27 shows some of the complex behaviors of equilibria and mass-transfer coefficients for the absorption of CO9 in solutions of potassium carbonate. Other than Henry s law, p = HC, which holds for some fairly dilute solutions, there is no general form of equilibrium relation. A typically complex equation is that for CO9 in contact with sodium carbonate solutions (Harte, Baker, and Purcell, Ind. Eng. Chem., 25, 528 [1933]), which is... [Pg.2106]

Examples of this procedure for dilute solutions of copper, silicon and aluminium shows the widely different behaviour of these elements. The vapour pressures of the pure metals are 1.14 x 10, 8.63 x 10 and 1.51 x 10 amios at 1873 K, and the activity coefficients in solution in liquid iron are 8.0, 7 X 10 and 3 X 10 respectively. There are therefore two elements of relatively high and similar vapour pressures, Cu and Al, and two elements of approximately equal activity coefficients but widely differing vapour pressures. Si and Al. The right-hand side of the depletion equation has the values 1.89, 1.88 X 10- , and 1.44 X 10 respectively, and we may conclude that there will be depletion of copper only, widr insignificant evaporation of silicon and aluminium. The data for the boundaty layer were taken as 5 x lO cm s for the diffusion coefficient, and 10 cm for the boundary layer thickness in liquid iron. [Pg.362]

For a dilute solution, the partial pressure exerted by a dissolved liquid (a solute) a in a liquid solvent is given by... [Pg.46]


See other pages where Liquids dilute solutions is mentioned: [Pg.203]    [Pg.229]    [Pg.203]    [Pg.229]    [Pg.319]    [Pg.330]    [Pg.1445]    [Pg.232]    [Pg.380]    [Pg.325]    [Pg.391]    [Pg.418]    [Pg.584]    [Pg.375]    [Pg.132]    [Pg.30]    [Pg.1045]    [Pg.1361]    [Pg.305]    [Pg.354]    [Pg.360]    [Pg.306]    [Pg.323]    [Pg.129]    [Pg.140]    [Pg.163]    [Pg.177]    [Pg.182]    [Pg.324]    [Pg.340]    [Pg.343]   
See also in sourсe #XX -- [ Pg.37 , Pg.38 ]




SEARCH



Diluted solutions

Solution diluting

Solutions dilution

© 2024 chempedia.info