Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bubble size, measurement

Figure 15.3 Bubble size measurements using shadowgraph technique (From [9]). Figure 15.3 Bubble size measurements using shadowgraph technique (From [9]).
An important condition which has to be fulfilled when using this method for foam dispersity determination is the absence of an excess hydrostatic pressure in the foam liquid phase. This pressure is equalized to a considerable extent when an equilibrium distribution the foam expansion ratio and the border pressure along the height of the foam column is established. This can be controlled by measuring the pressure in the Plateau borders at a certain level of the foam column by means of a micromanometer. However, if this condition is overlooked, the hydrostatic pressure can introduce a considerable error in the results of bubble size measurements, especially in low expansion ratio foams. Probably, it is the influence of the unrecorded hydrostatic pressure that can explain the lack of correspondence between the bubble size in the foam and the excess pressure in them, observed by Aleynikov[49]. The... [Pg.365]

The use of the volumetric coefficient k a for predicting reactor performance is appropriate if the reaction takes place almost entirely in the bulk liquid, and the equations for consecutive mass transfer and reaction apply [Eqs. (7.10) and (7.12)]. For simultaneous diffusion and reaction in the liquid film, the coefficient per unit area, ki, must be known to predict the enhancement factor. Unfortunately, the data for k show much more scatter than the data for kj a because of the difficulty in measuring a or calculating a from bubble size measurements. Also, has been shown to vary appreci-... [Pg.295]

Heindel, T.J. (1999), Bubble size measurements in a quiescent flber suspension, Journal of Pulp and Paper Science, 25(3) 104-110. [Pg.285]

According to the bubble size measurements of Werther If h < h bubble sizes are only little Influenced by particle properties while for larger units and higher bed heights the different values of dj max with different particle sizes (and size distributions) makes the performance of the fluid bed reactor strongly dependent on particle properties. These facts were Indeed observed In conversion experiments (, this... [Pg.211]

The prediction of drop sizes in liquid-liquid systems is difficult. Most of the studies have used very pure fluids as two of the immiscible liquids, and in industrial practice there almost always are other chemicals that are surface-active to some degree and make the pre-dic tion of absolute drop sizes veiy difficult. In addition, techniques to measure drop sizes in experimental studies have all types of experimental and interpretation variations and difficulties so that many of the equations and correlations in the literature give contradictoiy results under similar conditions. Experimental difficulties include dispersion and coalescence effects, difficulty of measuring ac tual drop size, the effect of visual or photographic studies on where in the tank you can make these obseiwations, and the difficulty of using probes that measure bubble size or bubble area by hght or other sample transmission techniques which are veiy sensitive to the concentration of the dispersed phase and often are used in veiy dilute solutions. [Pg.1636]

Measurements of the rate of change in concentration of oxidizable chemicals in aerated vessels have questionable value for assessing rates with biological systems. Not only are flow patterns and bubble sizes different for biological systems, but surface active agents and... [Pg.2139]

Several manual and continuous analytical techniques are used to measure SO2 in the atmosphere. The manual techniques involve two-stage sample collection and measurement. Samples are collected by bubbling a known volume of gas through a liquid collection medium. Collection efficiency is dependent on the gas-liquid contact time, bubble size, SO2 concentration, and SO2 solubility in the collection medium. The liquid medium contains chemicals which stabilize SO2 in solution by either complexation or oxidation to a more stable form. Field samples must be handled carefully to prevent losses from exposure to high temperatures. Samples are analyzed at a central laboratory by an appropriate method. [Pg.200]

Measurements for water containing 0.2% ethanol, the addition of which was found to influence markedly the gas holdup (see Section V,B,3), indicate that variation of surface tension has no significant effect upon axial mixing. The results for 2-mm spheres could not be correlated by a similar expression. It is proposed in that work that the flow mechanism in this case is significantly different because of the higher ratio between bubble size and particle size. [Pg.107]

Siemes and Weiss (SI4) investigated axial mixing of the liquid phase in a two-phase bubble-column with no net liquid flow. Column diameter was 42 mm and the height of the liquid layer 1400 mm at zero gas flow. Water and air were the fluid media. The experiments were carried out by the injection of a pulse of electrolyte solution at one position in the bed and measurement of the concentration as a function of time at another position. The mixing phenomenon was treated mathematically as a diffusion process. Diffusion coefficients increased markedly with increasing gas velocity, from about 2 cm2/sec at a superficial gas velocity of 1 cm/sec to from 30 to 70 cm2/sec at a velocity of 7 cm/sec. The diffusion coefficient also varied with bubble size, and thus, because of coalescence, with distance from the gas distributor. [Pg.117]

Later publications have been concerned with mass transfer in systems containing no suspended solids. Calderbank measured and correlated gas-liquid interfacial areas (Cl), and evaluated the gas and liquid mass-transfer coefficients for gas-liquid contacting equipment with and without mechanical agitation (C2). It was found that gas film resistance was negligible compared to liquid film resistance, and that the latter was largely independent of bubble size and bubble velocity. He concluded that the effect of mechanical agitation on absorber performance is due to an increase of interfacial gas-liquid area corresponding to a decrease of bubble size. [Pg.121]

Gas holdup and liquid circulation velocity are the most important parameters to determinate the conversion and selectivity of airlift reactors. Most of the reported works are focused on the global hydrodynamic behavior, while studies on the measurements of local parameters are much more limited [20]. In recent years, studies on the hydrodynamic behavior in ALRs have focused on local behaviors [20-23], such as the gas holdup, bubble size and bubble rise velocity. These studies give us a much better understanding on ALRs. [Pg.86]

Silicones exhibit an apparently low solubility in different oils. In fact, there is actually a slow rate of dissolution that depends on the viscosity of the oil and the concentration of the dispersed drops. The mechanisms of the critical bubble size and the reason a significantly faster coalescence occurs at a lower concentration of silicone can be explained in terms of the higher interfacial mobility, as can be measured by the bubble rise velocities. [Pg.318]

Interfacial area measurement. Knowledge of the interfacial area is indispensable in modeling two-phase flow (Dejesus and Kawaji, 1990), which determines the interphase transfer of mass, momentum, and energy in steady and transient flow. Ultrasonic techniques are used for such measurements. Since there is no direct relationship between the measurement of ultrasonic transmission and the volumetric interfacial area in bubbly flow, some estimate of the average bubble size is necessary to permit access to the volumetric interfacial area (Delhaye, 1986). In bubbly flows with bubbles several millimeters in diameter and with high void fractions, Stravs and von Stocker (1985) were apparently the first, in 1981, to propose the use of pulsed, 1- to 10-MHz ultrasound for measuring interfacial area. Independently, Amblard et al. (1983) used the same technique but at frequencies lower than 1 MHz. The volumetric interfacial area, T, is defined by (Delhaye, 1986)... [Pg.193]

Barring direct measurement of foam texture, we adopt the following reasoning. Because of the generation of foam bubbles by the snap-off and division mechanisms (4), bubble sizes are expected to be approximately that of pore bodies. Thus, the linear bubble density should scale roughly as n 6/Dwhere... [Pg.496]

Optical probes were used to measure the bubble size, frequency and velocity within the dense bed. The bubble velocity for an actively bubbling bed was found to closely agree with the drift flux form proposed by Davidson and Harrison (1963). In contrast, the volumetric flow rate of the bubbles was found to be far less than that predicted by the two-phase hypothesis (Fig. 40). [Pg.83]

Jet Half Angle. Determination of jet half-angle is shown also in Fig. 19. The jet half-angle can thus be calculated from the experimentally measured bubble size and jet penetration depth as follows ... [Pg.273]

The bubbling frequencies measured in this study are much smaller than the 5- 8 Hz measured by Rowe et al. (1979) and the 20 Hz measured by Hsiung and Grace (1978). The difference may be due to the dominant effect of the much larger initial bed heights and jet nozzle sizes in this study. [Pg.279]

Gas-Liquid Mass Transfer. Gas-liquid mass transfer within the three-phase fluidized bed bioreactor is dependent on the interfacial area available for mass transfer, a the gas-liquid mass transfer coefficient, kx, and the driving force that results from the concentration difference between the bulk liquid and the bulk gas. The latter can be easily controlled by varying the inlet gas concentration. Because estimations of the interfacial area available for mass transfer depends on somewhat challenging measurements of bubble size and bubble size distribution, much of the research on increasing mass transfer rates has concentrated on increasing the overall mass transfer coefficient, kxa, though several studies look at the influence of various process conditions on the individual parameters. Typical values of kxa reported in the literature are listed in Table 19. [Pg.648]

The studies on the performance of effervescent atomizer have been very limited as compared to those described above. However, the results of droplet size measurements made by Lefebvre et al.t87] for the effervescent atomizer provided insightful information about the effects of process parameters on droplet size. Their analysis of the experimental data suggested that the atomization quality by the effervescent atomizer is generally quite high. Better atomization may be achieved by generating small bubbles. Droplet size distribution may follow the Rosin-Rammler distribution pattern with the parameter q ranging from 1 to 2 for a gas to liquid ratio up to 0.2, and a liquid injection pressure from 34.5 to 345 kPa. The mean droplet size decreases with an increase in the gas to liquid ratio and/or liquid injection pressure. Any factor that tends to impair atomization quality, and increase the mean droplet size (for example, decreasing gas to liquid ratio and/or injection pressure) also leads to a more mono-disperse spray. [Pg.275]

If the reduction ratio is independently known in terms of the distance between the object and the camera, then the bubble size can be known by measuring the size of image by means of an ocular micrometer. [Pg.258]

It can be used for measuring bubble sizes not only at the nozzle tip but also at any position in the liquid column. Thus, even coalesced and ruptured bubbles can be examined by this method. [Pg.259]

The measuring devices like rotameters, orifice meters, etc. can also be introduced into the equipment prior to the bubble forming device. Keeping the above general set-up in mind, we can now proceed to examine the factors which influence the bubble size. [Pg.266]


See other pages where Bubble size, measurement is mentioned: [Pg.142]    [Pg.137]    [Pg.117]    [Pg.1292]    [Pg.51]    [Pg.142]    [Pg.137]    [Pg.117]    [Pg.1292]    [Pg.51]    [Pg.429]    [Pg.429]    [Pg.431]    [Pg.2019]    [Pg.25]    [Pg.43]    [Pg.124]    [Pg.366]    [Pg.334]    [Pg.77]    [Pg.558]    [Pg.32]    [Pg.194]    [Pg.46]    [Pg.363]    [Pg.3]    [Pg.66]    [Pg.70]    [Pg.90]    [Pg.303]    [Pg.360]   
See also in sourсe #XX -- [ Pg.37 ]

See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Bubble size

Measurement of Bubble Size Distributions

© 2024 chempedia.info