Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid system materials

A.S. Neverov, L.V. Samuseva and D.M. Lugovtsov. Investigation of regularities of phase separation in the polymer - low-molecular liquid systems. Materials, Technologies, Tools, 1998, No. 4, pp. 54-59. [Pg.78]

The early 1980s saw considerable interest in a new form of silicone materials, namely the liquid silicone mbbers. These may be considered as a development from the addition-cured RTV silicone rubbers but with a better pot life and improved physical properties, including heat stability similar to that of conventional peroxide-cured elastomers. The ability to process such liquid raw materials leads to a number of economic benefits such as lower production costs, increased ouput and reduced capital investment compared with more conventional rubbers. Liquid silicone rubbers are low-viscosity materials which range from a flow consistency to a paste consistency. They are usually supplied as a two-pack system which requires simple blending before use. The materials cure rapidly above 110°C and when injection moulded at high temperatures (200-250°C) cure times as low as a few seconds are possible for small parts. Because of the rapid mould filling, scorch is rarely a problem and, furthermore, post-curing is usually unnecessary. [Pg.839]

In some cases where condensing loads are high, or where it is required to recover condensed liquid blowdown material for pollution, toxicity or economic reasons, an unsteady state condensing system may be appropriate. Examples or such applications are as rollows ... [Pg.237]

Neutron diffraction has been used extensively to study a range of ionic liquid systems however, many of these investigations have focussed on high-temperature materials such as NaCl, studied by Enderby and co-workers [3]. A number of liquid systems with relatively low melting points have been reported, and this section summarizes some of the flndings of these studies. Many of the salts studied melt above 100 °C, and so are not room-temperature ionic liquids, but the same principles apply to the study of these materials as to the lower melting point salts. [Pg.131]

Industrial membrane processes may be classified according to the size range of materials that they are to separate and the driving force used in separation. There is always a degree of arbitrariness about such classifications, and the distinctions that are typically drawn. Table 16.1 presents classification of membrane separation processes for liquid systems. [Pg.354]

The formation of ordered two- and three-dimensional microstructuies in dispersions and in liquid systems has an influence on a broad range of products and processes. For example, microcapsules, vesicles, and liposomes can be used for controlled drug dehvery, for the contaimnent of inks and adhesives, and for the isolation of toxic wastes. In addition, surfactants continue to be important for enhanced oil recovery, ore beneficiation, and lubrication. Ceramic processing and sol-gel techniques for the fabrication of amorphous or ordered materials with special properties involve a rich variety of colloidal phenomena, ranging from the production of monodispersed particles with controlled surface chemistry to the thermodynamics and dynamics of formation of aggregates and microciystallites. [Pg.176]

Roll and coil coating systems utilize liquid coating materials with organic solvents, which must be stored, manifested, and disposed of according to 40 CFR Part 262 if classified as hazardous waste under 40 CFR Part 261. [Pg.294]

The redispersion microreactor is applied for the liquid-liquid polycondensation to yield an OLED material by multiple Suzuki coupling. As the initial test reaction, the following single Suzuki coupling is currently being explored in the liquid-liquid system made from water/ dioxane/toluene. [Pg.223]

The authors like to express their warm thanks to the many co-workers from our laboratories and our collaborators who participated in the work reported here for their enthusiasm to be actively involved in the field of chiral discotic liquid crystalline materials. Also the continuing discussions to unravel the many features of these systems are highly acknowledged. Their names appear in the list of references. [Pg.419]

A rather new concept for biphasic reactions with ionic liquids is the supported ionic liquid phase (SILP) concept [115]. The SILP catalyst consists of a dissolved homogeneous catalyst in ionic liquid, which covers a highly porous support material (Fig. 41.13). Based on the surface area of the solid support and the amount of the ionic liquid medium, an average ionic liquid layer thickness of between 2 and 10 A can be estimated. This means that the mass transfer limitations in the fluid/ionic liquid system are greatly reduced. Furthermore, the amount of ionic liquid required in these systems is very small, and the reaction can be carried in classical fixed-bed reactors. [Pg.1413]

A process is described [224] in which an exothermic reaction takes place in a semi-batch reactor at elevated temperatures and under pressure. The solid and liquid raw materials are both toxic and flammable. Spontaneous ignition is possible when the reaction mass is exposed to air. Therefore, the system must be totally enclosed and confined in order to contain safely any emissions arising from the loss of reactor control, and to prevent secondary combustion reactions upon discharge of the materials to the atmosphere. Further, procedures and equipment are necessary for the safe collection and disposal of solid, liquid, and gaseous emission products. [Pg.164]

Liquid crystal display technology, 15 113 Liquid crystalline cellulose, 5 384-386 cellulose esters, 5 418 Liquid crystalline conducting polymers (LCCPs), 7 523-524 Liquid crystalline compounds, 15 118 central linkages found in, 15 103 Liquid crystalline materials, 15 81-120 applications of, 15 113-117 availability and safety of, 15 118 in biological systems, 15 111-113 blue phases of, 15 96 bond orientational order of, 15 85 columnar phase of, 15 96 lyotropic liquid crystals, 15 98-101 orientational distribution function and order parameter of, 15 82-85 polymer liquid crystals, 15 107-111 polymorphism in, 15 101-102 positional distribution function and order parameter of, 15 85 structure-property relations in,... [Pg.526]

If gas-liquid and gas-solid separations are dependent on the saturation vapor pressure of the chemical component undergoing equilibration (a) What is the expected effect when the temperature of the system is raised (b) If the system is a gas-liquid system sketch what a plot of log VT vs. 1 IT would look like including when the T is below the freezing point of the stationary phase, (c) Why might it be better to sample the vapor phase above a solution as a sample to determine trace materials in the solution ... [Pg.417]

Contents Chain Configuration in Amorphous Polymer Systems. Material Properties of Viscoelastic Liquids. Molecular Models in Polymer Rheology. Experimental Results on Linear Viscoelastic Behavior. Molecular Entan-lement Theories of Linear iscoelastic Behavior. Entanglement in Cross-linked Systems. Non-linear Viscoelastic-Properties. [Pg.4]

The main emphasis in this chapter is on the use of membranes for separations in liquid systems. As discussed by Koros and Chern(30) and Kesting and Fritzsche(31), gas mixtures may also be separated by membranes and both porous and non-porous membranes may be used. In the former case, Knudsen flow can result in separation, though the effect is relatively small. Much better separation is achieved with non-porous polymer membranes where the transport mechanism is based on sorption and diffusion. As for reverse osmosis and pervaporation, the transport equations for gas permeation through dense polymer membranes are based on Fick s Law, material transport being a function of the partial pressure difference across the membrane. [Pg.472]

Biological treatment systems do not handle shock loads well. That probably won t be a problem because you are dealing with a soil system and not a liquid system, but the principles are the same. It will take longer and substantially more work to degrade higher eoneentrations of materials in the soils. [Pg.204]


See other pages where Liquid system materials is mentioned: [Pg.292]    [Pg.224]    [Pg.306]    [Pg.505]    [Pg.154]    [Pg.23]    [Pg.47]    [Pg.54]    [Pg.174]    [Pg.637]    [Pg.704]    [Pg.411]    [Pg.250]    [Pg.293]    [Pg.193]    [Pg.441]    [Pg.721]    [Pg.36]    [Pg.192]    [Pg.23]    [Pg.375]    [Pg.152]    [Pg.327]    [Pg.311]    [Pg.68]    [Pg.668]    [Pg.754]    [Pg.66]    [Pg.1202]    [Pg.248]    [Pg.286]    [Pg.151]    [Pg.195]    [Pg.118]   


SEARCH



Liquid materials

Materials systems

© 2024 chempedia.info