Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid/supercritical carbon dioxide, solvent

Natural Products. Various methods have been and continue to be employed to obtain useful materials from various parts of plants. Essences from plants are obtained by distillation (often with steam), direct expression (pressing), collection of exudates, enfleurage (extraction with fats or oils), and solvent extraction. Solvents used include typical chemical solvents such as alcohols and hydrocarbons. Liquid (supercritical) carbon dioxide has come into commercial use in the 1990s as an extractant to produce perfume materials. The principal forms of natural perfume ingredients are defined as follows the methods used to prepare them are described in somewhat general terms because they vary for each product and suppHer. This is a part of the industry that is governed as much by art as by science. [Pg.76]

Fluoropolymers in Liquid and Supercritical Carbon Dioxide Solvent Systems... [Pg.191]

DeYoung, J. P. Romack, T. J. DeSimone, J. M. Synthesis of Fluoropolymers in Liquid and Supercritical Carbon Dioxide Solvent Systems. In Fluoropolymers 1 Synthesis, Hougham, G. et al., Eds. Plenum Press New York, 1999 pp. 191— 205. [Pg.161]

Other biphasic C—C bonding reactions were carried out with fluorous solvents, for instance Suzuki- and Sonogashira-couplings [124] or ethene or propene oligomerizations [125, 126], Further new solvent systems use ionic liquids for the linear dimerisation of 1-butene to octenes [127] or the hydrovinylation of styrene with a combination ionic liquid/supercritical carbon dioxide [128] (cf. Section 7.4). [Pg.236]

The combination of ionic liquids with supercritical carbon dioxide is an attractive approach, as these solvents present complementary properties (volatility, polarity scale.). Compressed CO2 dissolves quite well in ionic liquid, but ionic liquids do not dissolve in CO2. It decreases the viscosity of ionic liquids, thus facilitating mass transfer during catalysis. The separation of the products in solvent-free form can be effective and the CO2 can be recycled by recompressing it back into the reactor. Continuous flow catalytic systems based on the combination of these two solvents have been reported [19]. This concept is developed in more detail in Section 5.4. [Pg.266]

The dense fluid that exists above the critical temperature and pressure of a substance is called a supercritical fluid. It may be so dense that, although it is formally a gas, it is as dense as a liquid phase and can act as a solvent for liquids and solids. Supercritical carbon dioxide, for instance, can dissolve organic compounds. It is used to remove caffeine from coffee beans, to separate drugs from biological fluids for later analysis, and to extract perfumes from flowers and phytochemicals from herbs. The use of supercritical carbon dioxide avoids contamination with potentially harmful solvents and allows rapid extraction on account of the high mobility of the molecules through the fluid. Supercritical hydrocarbons are used to dissolve coal and separate it from ash, and they have been proposed for extracting oil from oil-rich tar sands. [Pg.440]

SFE is used mainly for nonpolar compounds [e.g. polychlorinated biphenyls (PCBs)]. Typically, small aliquots of soil (0.5-10 g) are used for extraction. The extraction solvent is a supercritical fluid, most commonly carbon dioxide, which has properties of both a liquid and gas. The supercritical fluid easily penetrates the small pores of soil and dissolves a variety of nonpolar compounds. Supercritical carbon dioxide extracts compounds from environmental samples at elevated temperature (100-200 °C) and pressure (5000-10 000 psi). High-quality carbon dioxide is required to minimize... [Pg.875]

Methylene chloride is probably the most generally used solvent for decaffeination processes, but others, some of which are already found in small amounts in coffee beans, are coming into use. For example, ethyl acetate,8 formaldehyde-dimethylacetal, ethanol, methanol, acetone,9 propane,10 benzyl alcohol,11 carbon dioxide,12 and supercritical carbon dioxide with an acid13 are used. Generally the pressure and temperature of the system are adjusted to keep the solvent in the liquid state. Coffee oil itself is even described for this use in one patent.14... [Pg.93]

Gomez AM, Lopez CP and de la Ossa EM. 1996. Recovery of grape seed oil by liquid and supercritical carbon dioxide extraction a comparison with conventional solvent extraction. Chem Eng J 61(3) 227—231. [Pg.266]

Supercritical extraction is an important methodology for extracting organics from soil. As the name implies, the solvent is kept in its liquid state but above its boiling point by keeping it under pressure. Figure 12.8 shows a simplified supercritical carbon dioxide extraction setup. It is possible and common to have pumps, in addition to the one shown, to add chemical modifiers to the solvent, to increase extraction efficiency, or to extract a specific organic component [6,9-12],... [Pg.257]

Supercritical fluids (e.g. supercritical carbon dioxide, scCCb) are regarded as benign alternatives to organic solvents and there are many examples of their use in chemical synthesis, but usually under homogeneous conditions without the need for other solvents. However, SCCO2 has been combined with ionic liquids for the hydroformylation of 1-octene [16]. Since ionic liquids have no vapour pressure and are essentially insoluble in SCCO2, the product can be extracted from the reaction using CO2 virtually uncontaminated by the rhodium catalyst. This process is not a true biphasic process, as the reaction is carried out in the ionic liquid and the supercritical phase is only added once reaction is complete. [Pg.39]

Another environmental issue is the use of organic solvents. The use of chlorinated hydrocarbons, for example, has been severely curtailed. In fact, so many of the solvents favored by organic chemists are now on the black list that the whole question of solvents requires rethinking. The best solvent is no solvent, and if a solvent (diluent) is needed, then water has a lot to recommend it. This provides a golden opportunity for biocatalysis, since the replacement of classic chemical methods in organic solvents by enzymatic procedures in water at ambient temperature and pressure can provide substantial environmental and economic benefits. Similarly, there is a marked trend toward the application of organometal-lic catalysis in aqueous biphasic systems and other nonconventional media, such as fluorous biphasic, supercritical carbon dioxide and ionic liquids. ... [Pg.195]

Thus, the use of catalysts in new green reaction media such as ionic liquids, fluorous solvents, and supercritical carbon dioxide has become a viable alternative to those discussed within the chapters. [Pg.432]

A supercritical fluid (SCF) is a substance above its critical temperature and critical pressure. The critical temperature is the highest temperature at which a substance can exist as a gas. The critical pressure is the pressure needed at the critical temperature to liquify a gas. Above the critical temperature and critical pressure, a substance has a density characteristic of a liquid but the flow properties of a gas, and this combination offers advantages as a reaction solvent. The liquidlike density allows the supercritical fluid to dissolve substances, while the gaslike flow properties offer the potential for fast reaction rates. Supercritical carbon dioxide (scC02) has a critical temperature of 31°C and critical pressure of 73 atm. [Pg.183]

Carbon dioxide, as can most other substances, can exist in any one of three phases—solid, liquid, or gas—depending on temperature and pressure. At low temperatures, carbon dioxide exists as a solid ("dry ice") at almost any pressure. At temperatures greater than about -76°F (-60°C), however, carbon dioxide may exist as a gas or as a liquid, depending on the pressure. At some combination of temperature and pressure, however, carbon dioxide (and other substances) enters a fourth phase, known as the supercritical phase, whose properties are a combination of gas and liquid properties. For example, supercritical carbon dioxide (often represented as SCC02, SC-C02, SC-CO2, or a similar acronym) diffuses readily and has a low viscosity, properties associated with gases, but is also a good solvent, a property one often associates with liquids. The critical temperature and pressure at which carbon dioxide becomes a supercritical fluid are 31.1°C (88.0°F) and 73.8 atm (1,070 pounds per square inch). [Pg.204]

The process employs the supercritical fluid carbon dioxide as a solvent. When a compound (in this case carbon dioxide) is subjected to temperatures and pressures above its critical point (31°C, 7.4 MPa, respectively), it exhibits properties that differ from both the liquid and vapor phases. Polar bonding between molecules essentially stops. Some organic compounds that are normally insoluble become completely soluble (miscible in all proportions) in supercritical fluids. Supercritical carbon dioxide sustains combustion and oxidation reactions because it mixes well with oxygen and with nonpolar organic compounds. [Pg.1011]

As its name suggests, supercritical fluid extraction (SEE) relies on the solubilizing properties of supercritical fluids. The lower viscosities and higher diffusion rates of supercritical fluids, when compared with those of liquids, make them ideal for the extraction of diffusion-controlled matrices, such as plant tissues. Advantages of the method are lower solvent consumption, controllable selectivity, and less thermal or chemical degradation than methods such as Soxhlet extraction. Numerous applications in the extraction of natural products have been reported, with supercritical carbon dioxide being the most widely used extraction solvent. However, to allow for the extraction of polar compounds such as flavonoids, polar solvents (like methanol) have to be added as modifiers. There is consequently a substantial reduction in selectivity. This explains why there are relatively few applications to polyphenols in the literature. Even with pressures of up to 689 bar and 20% modifier (usually methanol) in the extraction fluid, yields of polyphenolic compounds remain low, as shown for marigold Calendula officinalis, Asteraceae) and chamomile Matricaria recutita, Asteraceae). " ... [Pg.3]

The efficacy of supercritical fluid extraction (SFE) for the recovery of 16 common organochlorine pesticides (OCPs) from liquid whole eggs was investigated by employing supercritical carbon dioxide (SC-C02) without the use of a solvent modifier to minimize interfering coextractives (Fiddler et al., 1999). [Pg.149]

Description of extraction of grape seed oil by means of liquid and supercritical carbon dioxide as solvent (Gomez et al., 1996). [Pg.149]

Supercritical solutions can be regarded as dense solvating gasses or low-viscous low-density liquids. The most well-known and probably most interesting candidate is based on carbon dioxide. Supercritical carbon dioxide can be regarded as an organic solvent. Various concepts have been developed using supercritical flu-... [Pg.446]


See other pages where Liquid/supercritical carbon dioxide, solvent is mentioned: [Pg.156]    [Pg.53]    [Pg.189]    [Pg.198]    [Pg.638]    [Pg.163]    [Pg.23]    [Pg.77]    [Pg.187]    [Pg.187]    [Pg.218]    [Pg.730]    [Pg.123]    [Pg.219]    [Pg.261]    [Pg.891]    [Pg.107]    [Pg.35]    [Pg.68]    [Pg.196]    [Pg.342]    [Pg.31]    [Pg.578]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



Carbon dioxide liquid

Carbon dioxide solvent

Carbon liquid

Carbon solvents

Liquid/supercritical

Solvent carbonate

Solvent liquids

Solvents supercritical carbon dioxide

Supercritical carbon dioxid

Supercritical carbon dioxide

Supercritical solvents

© 2024 chempedia.info