Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid chromatography sample volume

Figure 13.7 Selectivity effected by employing different step gradients in the coupled-column RPLC analysis of a surface water containing 0.40 p-g 1 bentazone, by using direct sample injection (2.00 ml). Clean-up volumes, (a), (c) and (d) 4.65 ml of M-1, and (b) 3.75 ml of M-1 transfer volumes, (a), (c) and (d), 0.50 ml of M-1, and (b), 0.40 ml of M-1. The displayed cliromatograms start after clean-up on the first column. Reprinted from Journal of Chromatography, A 644, E. A. Hogendoom et al, Coupled-column reversed-phase liquid chromatography-UV analyser for the determination of polar pesticides in water , pp. 307-314, copyright 1993, with permission from Elsevier Science. Figure 13.7 Selectivity effected by employing different step gradients in the coupled-column RPLC analysis of a surface water containing 0.40 p-g 1 bentazone, by using direct sample injection (2.00 ml). Clean-up volumes, (a), (c) and (d) 4.65 ml of M-1, and (b) 3.75 ml of M-1 transfer volumes, (a), (c) and (d), 0.50 ml of M-1, and (b), 0.40 ml of M-1. The displayed cliromatograms start after clean-up on the first column. Reprinted from Journal of Chromatography, A 644, E. A. Hogendoom et al, Coupled-column reversed-phase liquid chromatography-UV analyser for the determination of polar pesticides in water , pp. 307-314, copyright 1993, with permission from Elsevier Science.
On-line coupling of normal-phase liquid chromatography (NPLC) and gas chromatography is today a well developed and robust procedure and has been regularly applied to environmental analysis. When a fraction of the NPLC sample is introduced in to the GC unit, a large-volume interface (LVI) is needed but, due to the volatility of the organic solvent used in NPLC, this does not present such a great problem. [Pg.361]

Table 5.15 Relative signal responses from various injection volumes for the LC-MS-MS analysis of a wheat forage matrix sample. Reprinted from J. Chromatogr., A, 907, Choi, B. K., Hercules, D. M. and Gusev, A. L, Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression , 337-342, Copyright (2001), with permission from Elsevier Science... Table 5.15 Relative signal responses from various injection volumes for the LC-MS-MS analysis of a wheat forage matrix sample. Reprinted from J. Chromatogr., A, 907, Choi, B. K., Hercules, D. M. and Gusev, A. L, Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression , 337-342, Copyright (2001), with permission from Elsevier Science...
Crop material is homogenized with acetonitrile-water (9 1, v/v). The crop extract is centrifuged and an aliquot is rotary evaporated to a small volume. The sample is subjected to a Cig solid-phase extraction (SPE) cleanup procedure. The concentrated eluate is subjected to liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. [Pg.1168]

Milbemectin consists of two active ingredients, M.A3 and M.A4. Milbemectin is extracted from plant materials and soils with methanol-water (7 3, v/v). After centrifugation, the extracts obtained are diluted to volume with the extraction solvent in a volumetric flask. Aliquots of the extracts are transferred on to a previously conditioned Cl8 solid-phase extraction (SPE) column. Milbemectin is eluted with methanol after washing the column with aqueous methanol. The eluate is evaporated to dryness and the residual milbemectin is converted to fluorescent anhydride derivatives after treatment with trifluoroacetic anhydride in 0.5 M triethylamine in benzene solution. The anhydride derivatives of M.A3 and M.A4 possess fluorescent sensitivity. The derivatized samples are dissolved in methanol and injected into a high-performance liquid chromatography (HPLC) system equipped with a fluorescence detector for quantitative determination. [Pg.1332]

The small peak volumes typical of samples eluted from small bore columns and short small diameter particle columns used in high-speed liquid chromatography place severe demands on the dispersion characteristics of all components of the liquid chromatograph. The standard deviation of a peak eluting from a column is given by... [Pg.42]

For the analysis of americium in water, there is a broad array of sample preparation and detection methodologies that are available (see Table 7-2). Many of the common and standardized analytical methodologies typically include the minimization of sample volume, purification through co-precipitation, anion exchange column chromatography, and solvent extraction techniques followed by radiochemical detection of americium in the purified sample. Gross alpha analysis or liquid scintillation are common... [Pg.207]

Other kinds of bloassays have been used to detect the presence of specific allelochemical effects (8), effects on N2 fIxatlon (9), the presence of volatile compounds (10) and of Inhibitory substances produced by marine microalgae (11). Putnam and Duke (12) have summarized the extraction techniques and bioassay methods used In allelopathy research. Recent developments In high performance liquid chromatography (HPLC) separation of allelochemlcals from plant extracts dictates the need for bloassays with sensitivity to low concentrations of compounds contained In small volumes of eluent. Einhellig at al. (13) described a bloassay using Lemna minor L. growing In tissue culture cluster dish wells that maximizes sensitivity and minimizes sample requirements. [Pg.198]

The methylene blue reaction can also be used in a fractionation procedure for surfactants. The complexes with methylene blue can be collected in an organic solvent, concentrated, dissolved in methanol, and separated by high-performance liquid chromatography [205]. A variation of this method, permitting the collection of surfactant from large volumes of sample, should be workable in seawater. [Pg.402]

In the last decade, capillary electrophoresis (CE) has become one of the most powerful and conceptually simple separation techniques for the analysis of complex mixtures. The main reasons are its high resolution, relatively short analysis times, and low operational cost when compared to high-performance liquid chromatography (HPLC). The ability to analyze ultrasmall volume samples in the picoliter-to-nanoliter ranges makes it an ideal analytical method for extremely volume-limited biological microenvironments. [Pg.428]


See other pages where Liquid chromatography sample volume is mentioned: [Pg.109]    [Pg.378]    [Pg.445]    [Pg.104]    [Pg.274]    [Pg.147]    [Pg.343]    [Pg.408]    [Pg.86]    [Pg.160]    [Pg.238]    [Pg.79]    [Pg.107]    [Pg.418]    [Pg.425]    [Pg.755]    [Pg.255]    [Pg.354]    [Pg.382]    [Pg.402]    [Pg.402]    [Pg.555]    [Pg.565]    [Pg.611]    [Pg.623]    [Pg.819]    [Pg.830]    [Pg.905]    [Pg.913]    [Pg.920]    [Pg.922]    [Pg.70]    [Pg.101]    [Pg.4]    [Pg.93]    [Pg.389]    [Pg.227]    [Pg.227]    [Pg.398]    [Pg.175]    [Pg.119]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Liquid samples

Sample chromatography

Sample liquid chromatography

Sample volume

Sampling chromatography

Sampling volume

Volume liquids

© 2024 chempedia.info