Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipoproteins fatty acids

Layne, K.S., Goh, Y.K., and Jumpsen, J.A. 1996. Normal subjects consuming physiological levels of 18 3(n-3) and 20 5(n-3) from flaxseed or fish oils have characteristic differences in plasma lipid and lipoprotein fatty acid levels. J. Nutr. 126, 2130-2140. [Pg.85]

Nelson, C. M. and S. M. Tnnis (1999). "Plasma lipoprotein fatty acids are altered by the positional distribution of fatty acids in infant formula triacylglycerols and human milk."... [Pg.156]

Atherosclerosis is a degenerative disease which is characterized by cholesterol-containing thickening of arterial walls. Saturated fatty acids, high levels of cholesterol, elevated blood pressure, and elevated serum lipoprotein are well-knowm risk... [Pg.297]

Rhodamine 6G long-chain hydrocarbons [169] squalene, a-amyrin [170] methyl esters of fatty acids [171] glycerides [91] sterols [172, 173] isoprenoids, quinones [HI] lipoproteins [174] glycosphingolipids [175] phenolic lipids [176] phosphonolipids [177] increasing the sensitivity after exposure to iodine vapor [178,179]... [Pg.44]

FIGURE 24.3 (a) A duct at the junction of the pancreas and duodenum secretes pancreatic juice into the duodenum, the first portion of the small intestine, (b) Hydrolysis of triacylglycerols by pancreatic and intestinal lipases. Pancreatic lipases cleave fatty acids at the C-1 and C-3 positions. Resulting monoacylglycerols with fatty acids at C-2 are hydrolyzed by intestinal lipases. Fatty acids and monoacylglycerols are absorbed through the intestinal wall and assembled into lipoprotein aggregates termed chylomicrons (discussed in Chapter 25). [Pg.778]

We turn now to the biosynthesis of lipid structures. We begin with a discussion of the biosynthesis of fatty acids, stressing the basic pathways, additional means of elongation, mechanisms for the introduction of double bonds, and regulation of fatty acid synthesis. Sections then follow on the biosynthesis of glyc-erophospholipids, sphingolipids, eicosanoids, and cholesterol. The transport of lipids through the body in lipoprotein complexes is described, and the chapter closes with discussions of the biosynthesis of bile salts and steroid hormones. [Pg.802]

When most lipids circulate in the body, they do so in the form of lipoprotein complexes. Simple, unesterified fatty acids are merely bound to serum albumin and other proteins in blood plasma, but phospholipids, triacylglycerols, cholesterol, and cholesterol esters are all transported in the form of lipoproteins. At various sites in the body, lipoproteins interact with specific receptors and enzymes that transfer or modify their lipid cargoes. It is now customary to classify lipoproteins according to their densities (Table 25.1). The densities are... [Pg.840]

Gene activated Lipoprotein lipase fatty acid transporter protein adipocyte fatty acid binding protein acyl-CoA synthetase malic enzyme GLUT-4 glucose transporter phosphoenolpyruvate carboxykinase... [Pg.121]

Increased lipid synthesis/inhibi-tion of lipolysis Activation of lipoprotein lipase (LPL)/induc-tion of fatty acid synthase (FAS)/inactivation of hormone sensitive lipase (HSL) Facilitated uptake of fatty acids by LPL-dependent hydrolysis of triacylglycerol from circulating lipoproteins. Increased lipid synthesis through Akt-mediated FAS-expression. Inhibition of lipolysis by preventing cAMP-dependent activation of HSL (insulin-dependent activation of phosphodiesterases )... [Pg.634]

Abbreviations TG, triglycerides LDL-C, low density lipoprotein cholesterol HDL-C, high density lipoprotein cholesterol FAS, fatty acid synthase VLDL, very low density lipoprotein. [Pg.945]

Cholesterol (Figure 14-17) is widely distributed in all cells of the body but particularly in nervous tissue. It is a major constituent of the plasma membrane and of plasma lipoproteins. It is often found as cholesteryl ester, where the hydroxyl group on position 3 is esteri-fied with a long-chain fatty acid. It occurs in animals but not in plants. [Pg.118]

Figure 15-6. Transport and fate of major lipid substrates and metabolites. (FFA, free fatty acids LPL, lipoprotein lipase MG, monoacylglycerol TG, triacylglycerol VLDL, very low density lipoprotein.)... Figure 15-6. Transport and fate of major lipid substrates and metabolites. (FFA, free fatty acids LPL, lipoprotein lipase MG, monoacylglycerol TG, triacylglycerol VLDL, very low density lipoprotein.)...
Salati LM, Goodridge AG Fatty acid synthesis in eukaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes. Vance DE, Vance JE (editors). Elsevier, 1996. [Pg.179]

Figure 25-6. The synthesis of very low density lipoprotein (VLDL) in the liver and the possible loci of action of factors causing accumulation of triacylglycerol and a fatty liver. (EFA, essential fatty acids FFA, free fatty acids ... Figure 25-6. The synthesis of very low density lipoprotein (VLDL) in the liver and the possible loci of action of factors causing accumulation of triacylglycerol and a fatty liver. (EFA, essential fatty acids FFA, free fatty acids ...
Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)... Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)...
The reason for the cholesterol-lowering effect of polyunsaturated fatty acids is still not fully understood. It is clear, however, that one of the mechanisms involved is the up-regulation of LDL receptors by poly-and monounsaturated as compared with saturated fatty acids, causing an increase in the catabolic rate of LDL, the main atherogenic lipoprotein. In addition, saturated fatty acids cause the formation of smaller VLDL particles that contain relatively more cholesterol, and they are utilized by extrahepatic tissues at a slower rate than are larger particles—tendencies that may be regarded as atherogenic. [Pg.227]

Figure 27-1. Metabolic interrelationships between adipose tissue, the liver, and extrahepatic tissues. In extrahepatic tissues such as heart, metabolic fuels are oxidized in the following order of preference (1) ketone bodies, (2) fatty acids, (3) glucose. (LPL, lipoprotein lipase FFA, free fatty acids VLDL, very low density lipoproteins.)... Figure 27-1. Metabolic interrelationships between adipose tissue, the liver, and extrahepatic tissues. In extrahepatic tissues such as heart, metabolic fuels are oxidized in the following order of preference (1) ketone bodies, (2) fatty acids, (3) glucose. (LPL, lipoprotein lipase FFA, free fatty acids VLDL, very low density lipoproteins.)...
In adipose tissue, the effect of the decrease in insulin and increase in glucagon results in inhibition of lipo-genesis, inactivation of lipoprotein lipase, and activation of hormone-sensitive lipase (Chapter 25). This leads to release of increased amounts of glycerol (a substrate for gluconeogenesis in the liver) and free fatty acids, which are used by skeletal muscle and liver as their preferred metabolic fuels, so sparing glucose. [Pg.234]

Heart Pumping of blood Aerobic pathways, eg, P-oxidation and citric acid cycle Free fatty acids, lactate, ketone bodies, VLDL and chylomicron triacylglycerol, some glucose Lipoprotein lipase. Respiratory chain well developed. [Pg.235]

Adipose tissue Storage and breakdown of triacylglyc-erol Esterification of fatty acids and lipolysis lipogenesis Glucose, lipoprotein triacylglycerol Free fatty acids, glycerol Lipoprotein lipase, hormone-sensitive lipase... [Pg.235]


See other pages where Lipoproteins fatty acids is mentioned: [Pg.458]    [Pg.44]    [Pg.458]    [Pg.44]    [Pg.215]    [Pg.779]    [Pg.39]    [Pg.494]    [Pg.495]    [Pg.502]    [Pg.698]    [Pg.700]    [Pg.758]    [Pg.942]    [Pg.942]    [Pg.943]    [Pg.943]    [Pg.1160]    [Pg.111]    [Pg.125]    [Pg.125]    [Pg.201]    [Pg.205]    [Pg.208]    [Pg.211]    [Pg.212]    [Pg.212]    [Pg.214]    [Pg.217]    [Pg.219]    [Pg.232]    [Pg.235]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



© 2024 chempedia.info