Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipophilicity molecules

Generalizations. Several generalizations can be made regarding taste (16,26). A substance must be in water solution, eg, the Hquid bathing the tongue (sahva), to have taste. Water solubiUty is the first requirement of the taste stimulus (12). The typical stimuli are concentrated aqueous solution in contrast with the Hpid-soluble substances which act as stimuli for olfaction (22). Many taste substances are hydrophilic, nonvolatile molecules (15). Taste detection thresholds for lipophilic molecules tend to be lower than those of their hydrophilic counterparts (16). [Pg.11]

Dmg distribution into tissue reservoirs depends on the physicochemical properties of the dmg. Tissue reservoirs include fat, bone, and the principal body organs. Access of dmgs to these reservoirs depends on partition coefficient, charge or degree of ionization at physiological pH, and extent of protein binding. Thus, lipophilic molecules accumulate in fat reservoirs and this accumulation can alter considerably both the duration and the concentration—response curves of dmg action. Some dmgs may accumulate selectively in defined tissues, for example, the tetracycline antibiotics in bone (see Antibiotics,tetracyclines). [Pg.269]

The passage of a small and/or highly lipophilic molecule through the membrane phospholipid bilayer according to the gradient of its concentrations across the plasma membrane. It is slower than facilitated diffusion, which, however, also follows the gradient of solute concentrations across the membrane. [Pg.935]

Ubiquinone, known also as coenzyme Q, plays a crucial role as a respiratory chain electron carrier transport in inner mitochondrial membranes. It exerts this function through its reversible reduction to semiquinone or to fully hydrogenated ubiquinol, accepting two protons and two electrons. Because it is a small lipophilic molecule, it is freely diffusable within the inner mitochondrial membrane. Ubiquinones also act as important lipophilic endogenous antioxidants and have other functions of great importance for cellular metabolism. ... [Pg.106]

Water Layer Rate-Limiting Transport (Lipophilic Molecules)... [Pg.77]

The three prototype mixed p agonist/S antagonists described in this chapter have excellent potential as analgesics with low propensity to produce tolerance and dependence. The pseudotetrapeptide DIPP-NH2[ ] has already been shown to produce a potent analgesic effect, less tolerance than morphine, and no physical dependence upon chronic administration. In preliminary experiments, the tetrapeptides DIPP-NH2 and DIPP-NH2[T] were shown to cross the BBB to some extent, but further structural modifications need to be performed in order to improve the BBB penetration of these compounds. The Tyr-Tic dipeptide derivatives can also be expected to penetrate into the central nervous system because they are relatively small, lipophilic molecules. In this context, it is of interest to point out that the structurally related dipeptide H-Dmt-D-Ala-NH-(CH2)3-Ph (SC-39566), a plain p-opioid agonist, produced antinociception in the rat by subcutaneous and oral administration [72], As indicated by the results of the NMR and molecular mechanics studies, the conformation of the cyclic p-casomorphin analogue H-Tyr-c[-D-Orn-2-Nal-D-Pro-Gly-] is stabilized by intramolecular hydrogen bonds. There-... [Pg.173]

Yamashita et al. [82] also studied the effect of BSA on transport properties in Caco-2 assays. They observed that the permeability of highly lipophilic molecules could be rate limited by the process of desorption off the cell surface into the receiving solution, due to high membrane retention and very low water solubility. They recommended using serum proteins in the acceptor compartment when lipophilic molecules are assayed (which is a common circumstance in discovery settings). [Pg.135]

These general observations have been confirmed in PAMPA measurements in our laboratory, using the 2% DOPC-dodecane lipid. With very lipophilic molecules, glycocholic acid added to the donor solution slightly reduced permeabilities, taurocholic acid increased permeabilities, but SLS arrested membrane transport altogether in several cases (especially cationic, surface-active drugs such as CPZ). [Pg.136]

In PAMPA measurements each well is usually a one-point-in-time (single-timepoint) sample. By contrast, in the conventional multitimepoint Caco-2 assay, the acceptor solution is frequently replaced with fresh buffer solution so that the solution in contact with the membrane contains no more than a few percent of the total sample concentration at any time. This condition can be called a physically maintained sink. Under pseudo-steady state (when a practically linear solute concentration gradient is established in the membrane phase see Chapter 2), lipophilic molecules will distribute into the cell monolayer in accordance with the effective membrane-buffer partition coefficient, even when the acceptor solution contains nearly zero sample concentration (due to the physical sink). If the physical sink is maintained indefinitely, then eventually, all of the sample will be depleted from both the donor and membrane compartments, as the flux approaches zero (Chapter 2). In conventional Caco-2 data analysis, a very simple equation [Eq. (7.10) or (7.11)] is used to calculate the permeability coefficient. But when combinatorial (i.e., lipophilic) compounds are screened, this equation is often invalid, since a considerable portion of the molecules partitions into the membrane phase during the multitimepoint measurements. [Pg.138]

In Section 7.7.5.4, we discuss the effects of additives in the acceptor wells that create a sink condition, by strongly binding lipophilic molecules that permeate across the membrane. As a result of the binding in the acceptor compartment, the transported molecule has a reduced active (unbound) concentration in the acceptor compartment, cA(t), denoted by the lowercase letter c. The permeability equations in the preceding section, which describe the nonsink process, are inappropriate for this condition. In the present case, we assume that the reverse transport is effectively nil that is, CA(t) in Eq. (7.1) may be taken as cA(t) 0. As a result, the permeability equation is greatly simplified ... [Pg.147]

For ionizable lipophilic molecules, the right pH gradients can drive the solute in the acceptor compartment to the charged (impermeable) form the uncharged fraction is then further diminished in concentration by binding to the serum protein or surfactant, in the double-sink assay. [Pg.152]

Figure 7.22b is a similar plot for the other two lipids considered olive oil (unfilled symbols) and octanol (filled symbols). Both lipids can be described by a bilinear relationship, patterned after the case in Fig. 7.19d [Eq. (7.44)]. Octanol shows a declining log Pe relationship for very lipophilic molecules (log Kd > 2). The probe set of 32 molecules does not have examples of very hydrophilic molecules, with log Kd < —2, so the expected hydrophilic ascending part of the solid curve in Fig. 7.22b is not fully shown. Nevertheless, the shape of the plot is very similar to that reported by Camenisch et al. [546], shown in Fig. 7.8c. The UWL in the latter study (stirred solutions) is estimated to be 460 pm (Fig. 7.8b), whereas the corresponding value in unstirred 96-well microtiter late assay is about 2300 pm. For this reason, the high point in Fig. 7.22b is 16 x 10-6 cm/s, whereas it is 70 x 10 6 cm/s in Fig. 7.8c. Figure 7.22b is a similar plot for the other two lipids considered olive oil (unfilled symbols) and octanol (filled symbols). Both lipids can be described by a bilinear relationship, patterned after the case in Fig. 7.19d [Eq. (7.44)]. Octanol shows a declining log Pe relationship for very lipophilic molecules (log Kd > 2). The probe set of 32 molecules does not have examples of very hydrophilic molecules, with log Kd < —2, so the expected hydrophilic ascending part of the solid curve in Fig. 7.22b is not fully shown. Nevertheless, the shape of the plot is very similar to that reported by Camenisch et al. [546], shown in Fig. 7.8c. The UWL in the latter study (stirred solutions) is estimated to be 460 pm (Fig. 7.8b), whereas the corresponding value in unstirred 96-well microtiter late assay is about 2300 pm. For this reason, the high point in Fig. 7.22b is 16 x 10-6 cm/s, whereas it is 70 x 10 6 cm/s in Fig. 7.8c.
Kansy et al. [550] reported the permeability-lipophilicity relationship for about 120 molecules based on the 10% wt/vol egg lecithin plus 0.5% wt/vol cholesterol in dodecane membrane lipid (model 15.0 in Table 7.3), shown in Fig. 7.23. The vertical axis is proportional to apparent permeability [see Eq. (7.9)]. For log Kd > 1.5, Pa decreases with increasing log Kd. In terms of characteristic permeability-lipophilicity plots of Fig. 7.19, the Kansy result in Fig. 7.23 resembles the bilinear case in Fig. (7.19d). Some of the Pa values may be underestimated for the most lipophilic molecules because membrane retention was not considered in the analysis. [Pg.166]

Membrane retention of lipophilic molecules is significantly increased in octanol, compared to 2% DOPC. Chlorpromazine and progesterone show R > 90% in octanol. Phenazopyridine, verapamil, promethazine, and imipramine show R > 70%. [Pg.168]

The two-component lipid models were also characterized in the absence of sink conditions (Table 7.8). Comparisons between models 7.0 (Table 7.7) and 1.0 (Table 7.5) suggest that negative charge in the absence of sink causes the permeabilities of many of the bases to decrease. Exceptions are quinine, prazosin, primaquine, ranitidine, and especially metoprolol. The inclusion of 0.6% PA causes Pe of metoprolol to increase nearly 10-fold, to a value twice that of propranolol, a more lipophilic molecule than metoprolol (based on the octanol-water scale). Naproxen and ketoprofen become notably more permeable in the two-component system. Surprisingly, the neutral progesterone becomes significantly less permeable in this system. [Pg.181]

Since lipophilic molecules have affinity for both the membrane lipid and the serum proteins, membrane retention is expected to decrease, by the extent of the relative lipophilicities of the drug molecules in membrane lipid versus serum proteins, and by the relative amounts of the two competitive-binding phases [see Eqs. (7.41)-(7.43)]. Generally, the serum proteins cannot extract all of the sample molecules from the phospholipid membrane phase at equilibrium. Thus, to measure permeability under sink conditions, it is still necessary to characterize the extent of membrane retention. Generally, this has been sidestepped in the reported literature. [Pg.197]

Many research compounds are poorly soluble in water. When very lipophilic molecules precipitate in the donor wells, it is possible to filter the donor solution before the PAMPA sandwich is prepared. On occasion, the filtered donor solution contains such small amounts of the compound that determination of concentrations by UV spectrophotometry becomes impractical. One strategy to overcome the precipitation of the sample molecules in the donor wells is to add a cosolvent to the solutions (Section 7.4.4). It is a strategy of compromise and practicality. Although the cosolvent may solubilize the lipophilic solute molecule, the effect on transport may be subtle and not easy to predict. At least three mechanisms may cause Pe and membrane retention (%R) values to alter as a result of the cosolvent addition. To a varying extent, all three mechanisms may simultaneously contribute to the observed transport ... [Pg.226]

An alternative method to overcome the solubility problem mentioned in the last section is to use bile salts to solubilize lipophilic molecules in the donor wells. Figure 7.51 shows a plot of relative permeability (Pe without bildPe with bile) versus membrane retention, which is related to lipophilicity (Section 7.7.2). As the plot shows, the most lipophilic molecules (carvedilol, propranolol, and verapamil) have attenuated permeabilities (by a factor of 3 in the case of carvedilol). The effective partition coefficient between the PAMPA membrane phase and the aqueous phase containing bile salt micelles [577] is expected to be lower for lipophilic molecules, which should result in lower Pe values. This is evident in the figure. [Pg.228]

The method for creating acceptor sink condition discussed so far is based on the use of a surfactant solution. In such solutions, anionic micelles act to accelerate the transport of lipophilic molecules. We also explored the use of other sink-forming reagents, including serum proteins and uncharged cyclodextrins. Table 7.20 compares the sink effect of 100 mM (5-cyclodextrin added to the pH 7.4 buffer in the acceptor wells to that of the anionic surfactant. Cyclodextrin creates a weaker sink for the cationic bases, compared to the anionic surfactant. The electrostatic binding force between charged lipophilic bases and the anionic surfactant micelles... [Pg.228]

The receiver compartment in the GIT has a strong sink condition, effected by serum proteins. In contrast, the BBB does not have a strong sink condition. In the GIT, lipophilic molecules are swept away from the site of absorption in... [Pg.236]

The strategy for the development of the oral absorption model at pION is illustrated in Fig. 7.58. The human jejunal permeabilities reported by Winiwarter et al. [56] were selected as the in vivo target to simulate by the in vitro model. In particular, three acids, three bases and two nonionized molecules studied by the University of Uppsala group were selected as probes, as shown in Fig. 7.58. They are listed in the descending order of permeabilities in Fig. 7.58. Most peculiar in the ordering is that naproxen, ketoprofen, and piroxicam are at the top of the list, yet these three acids are ionized under in vivo pH conditions and have lipophilicity (log Kj) values near or below zero. The most lipophilic molecules tested, verapamil and carbamazepine... [Pg.237]


See other pages where Lipophilicity molecules is mentioned: [Pg.171]    [Pg.164]    [Pg.501]    [Pg.939]    [Pg.22]    [Pg.120]    [Pg.450]    [Pg.99]    [Pg.178]    [Pg.77]    [Pg.422]    [Pg.435]    [Pg.147]    [Pg.15]    [Pg.56]    [Pg.70]    [Pg.126]    [Pg.135]    [Pg.137]    [Pg.151]    [Pg.155]    [Pg.170]    [Pg.177]    [Pg.196]    [Pg.196]    [Pg.197]    [Pg.202]    [Pg.237]    [Pg.115]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Drug molecules lipophilicity

Lipophilic lead molecules

Lipophilic molecules

Lipophilic molecules

Lipophilic molecules, delivery

Lipophilic molecules, enhancement

Permeation of large lipophilic molecules—steroid transport

Water Layer Rate-Limiting Transport (Lipophilic Molecules)

© 2024 chempedia.info