Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partition coefficient effect

The properties of the cuticle which determine herbicide absorption have been reviewed by Price and Kirkwood. Permeability of the cuticular membrane is determined largely by the wax component of the cuticle and is influenced by such factors as cuticle thickness, wax viscosity, molecular radius of the penetrating molecule, partition coefficient, effective area, formulation, and temperature. Pores and canals, which have been demonstrated to exist in the cuticular membrane of many species, appear to act... [Pg.223]

The kinetic data are essentially always treated using the pseudophase model, regarding the micellar solution as consisting of two separate phases. The simplest case of micellar catalysis applies to unimolecTilar reactions where the catalytic effect depends on the efficiency of bindirg of the reactant to the micelle (quantified by the partition coefficient, P) and the rate constant of the reaction in the micellar pseudophase (k ) and in the aqueous phase (k ). Menger and Portnoy have developed a model, treating micelles as enzyme-like particles, that allows the evaluation of all three parameters from the dependence of the observed rate constant on the concentration of surfactant". ... [Pg.129]

The catalytic effect on unimolecular reactions can be attributed exclusively to the local medium effect. For more complicated bimolecular or higher-order reactions, the rate of the reaction is affected by an additional parameter the local concentration of the reacting species in or at the micelle. Also for higher-order reactions the pseudophase model is usually adopted (Figure 5.2). However, in these systems the dependence of the rate on the concentration of surfactant does not allow direct estimation of all of the rate constants and partition coefficients involved. Generally independent assessment of at least one of the partition coefficients is required before the other relevant parameters can be accessed. [Pg.129]

In contrast to SDS, CTAB and C12E7, CufDSjz micelles catalyse the Diels-Alder reaction between 1 and 2 with enzyme-like efficiency, leading to rate enhancements up to 1.8-10 compared to the reaction in acetonitrile. This results primarily from the essentially complete complexation off to the copper ions at the micellar surface. Comparison of the partition coefficients of 2 over the water phase and the micellar pseudophase, as derived from kinetic analysis using the pseudophase model, reveals a higher affinity of 2 for Cu(DS)2 than for SDS and CTAB. The inhibitory effect resulting from spatial separation of la-g and 2 is likely to be at least less pronoimced for Cu(DS)2 than for the other surfactants. [Pg.178]

Table 14. Effect of Siloxane Molecular Weight on Water Solubility and Octanol-Water Partition Coefficient... Table 14. Effect of Siloxane Molecular Weight on Water Solubility and Octanol-Water Partition Coefficient...
Octano/—Water Partition Coefficient. The Fragment approach (234—236) has been reviewed (227) and another method similar to the UNIFAC refit for Henry s constant has been proposed. Improved accuracy for many species and the abiUty to correct for temperature effects have been claimed for the newer method. [Pg.254]

Other important determinants of the effects of compounds, especially solvents, are their partition coefficients, e.g., blood-tissue partition coefficients, which determine the distribution of the compound in the body. The air-blood partition coefficient is also important for the absorption of a compound because it determines how quickly the compound can be absorbed from the airspace of the lungs into the circulation. An example of a compound that has a high air-blood partition coefficient is trichloroethane (low blood solubility) whereas most organic solvents (e.g., benzene analogues) have low air-blood partition coefficients (high blood solubility). [Pg.260]

Table 11. Solvent Effects on Solvent-Water Partition Coefficients (P) [49]... Table 11. Solvent Effects on Solvent-Water Partition Coefficients (P) [49]...
We have already encountered the ir, a, and p quantities. The 8h term is inserted to account for the cavity effect. Equation (8-80) is a 12-parameter equation for which considerable generality is claimed, in that it is said to be applicable to chemical rates and equilibria, spectra, solubilities, partition coefficients, and even biological responses. Usually, of course, by judicious selection of solvents, it is possible to reduce the number of parameters by ensuring that some terms are negligible.An example requiring most of the parameters in Eq. (8-80) is the solvolysis/dehydrohalogenation of r-butyl chloride in 21 HBD and non-HBD solvents, for which this correlation was found ... [Pg.444]

General anaesthetics have been in use for the last 100 years, yet their mechanism of action are still not yet clearly defined. For many years it was thought that general anaesthetics exerted their effects by dissolving in cell membranes and perturbing the lipid environment in a non-specific manner. This theory derived from the observation that for a number of drugs which induced anaesthesia, their potency correlated with their oil-water partition coefficients. This Meyer-Oveiton correlation was accepted for a number of years, however in the last 15-20 years evidence has shown that a more likely theory is that of specific interactions of anaesthetics with proteins, particularly those within the CNS that mediate neurotransmission [1]. [Pg.533]

Barrett and Thomas (10)proposed that these effects of differential monomer adsorption could be modeled by correcting homogeneous solution copolymerization reactivity ratios with the monomer s partition coefficient between the particles and the diluent. The partition coefficient is measured by static equilibrium experiments. Barrett s suggested equations are ... [Pg.274]

The toxicological or cumulative effect of illicit drugs on the ecosystems has not been studied yet. Moreover, their fate and transport in the environment is to a big extent still unknown. Due to their physical-chemical properties (octanol-water partition coefficient, solubility, etc.) some of them, such as cannabinoids, are likely to bioaccumulate in organisms or concentrate in sediments whereas the rest, much more polar compounds, will tend to stay in aqueous environmental matrices. However, continuous exposure of aquatic organisms to low aquatic concentrations of these substances, some of them still biologically active (e.g., cocaine (CO), morphine (MOR) and MDMA) may cause undesirable effects on the biota. [Pg.204]

The solubilization of amino acids in AOT-reversed micelles has been widely investigated showing the importance of the hydrophobic effect as a driving force in interfacial solubihzation [153-157]. Hydrophilic amino acids are solubilized in the aqueous micellar core through electrostatic interactions. The amino acids with strongly hydrophobic groups are incorporated mainly in the interfacial layer. The partition coefficient for tryptophan and micellar shape are affected by the loading ratio of tryptophan to AOT [158],... [Pg.488]

Using the formalism of statistical mechanics, Giddings et al. [135] investigated the effects of molecular shape and pore shape on the equilibrium distribution of solutes in pores. The equilibrium partition coefficient is defined as the ratio of the partition function in the pore... [Pg.552]

When a two- or higher-phase system is used with two or more phases permeable to the solute of interest and when interactions between the phases is possible, it would be necessary to apply the principle of local mass equilibrium [427] in order to derive a single effective diffusion coefficient that will be used in a one-equation model for the transport. Extensive justification of the principle of local thermdl equilibrium has been presented by Whitaker [425,432]. If the transport is in series rather than in parallel, assuming local equilibrium with equilibrium partition coefficients equal to unity, the effective diffusion coefficient is... [Pg.567]

In 1868 two Scottish scientists, Crum Brown and Fraser [4] recognized that a relation exists between the physiological action of a substance and its chemical composition and constitution. That recognition was in effect the birth of the science that has come to be known as quantitative structure-activity relationship (QSAR) studies a QSAR is a mathematical equation that relates a biological or other property to structural and/or physicochemical properties of a series of (usually) related compounds. Shortly afterwards, Richardson [5] showed that the narcotic effect of primary aliphatic alcohols varied with their molecular weight, and in 1893 Richet [6] observed that the toxicities of a variety of simple polar chemicals such as alcohols, ethers, and ketones were inversely correlated with their aqueous solubilities. Probably the best known of the very early work in the field was that of Overton [7] and Meyer [8], who found that the narcotic effect of simple chemicals increased with their oil-water partition coefficient and postulated that this reflected the partitioning of a chemical between the aqueous exobiophase and a lipophilic receptor. This, as it turned out, was most prescient, for about 70% of published QSARs contain a term relating to partition coefficient [9]. [Pg.470]

The importance of lipophilicity to bitterness has been well established, both directly and indirectly. The importance of partitioning effects in bitterness perception has been stressed by Rubin and coworkers, and Gardner demonstrated that the threshold concentration of bitter amino acids and peptides correlates very well with molecular connectivity (which is generally regarded as a steric parameter, but is correlated with the octanol-water partition coefficient ). Studies on the surface pressure in monolayers of lipids from bovine, circumvallate papillae also indicated that there is a very good correlation between the concentration of a bitter compound that is necessary in order to give an increase in the surface pressure with the taste threshold in humans. These results and the observations of others suggested that the ability of bitter compounds to penetrate cell membranes is an important factor in bitterness perception. [Pg.318]


See other pages where Partition coefficient effect is mentioned: [Pg.39]    [Pg.276]    [Pg.39]    [Pg.276]    [Pg.711]    [Pg.142]    [Pg.273]    [Pg.407]    [Pg.407]    [Pg.408]    [Pg.466]    [Pg.463]    [Pg.458]    [Pg.31]    [Pg.327]    [Pg.21]    [Pg.67]    [Pg.182]    [Pg.431]    [Pg.655]    [Pg.569]    [Pg.597]    [Pg.224]    [Pg.11]    [Pg.13]    [Pg.28]    [Pg.32]    [Pg.41]    [Pg.244]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Effect on partition coefficient

Effective coefficients

Effective partition coefficient

Effectiveness coefficient

Partitioning effects

© 2024 chempedia.info