Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coefficient lipophilicity

Medicinal chemists have numerous fast in sUico tools to evaluate the log Poet of NCEs prior to synthesis. These different methods can be divided in two main classes according to the level of description of molecular structure, namely 2D fragmental methods which cut the molecule in typical atomic or multiatomic fragments possessing their own lipophilicity coefficients and 3D global methods which code explicitly the principal intermolecular interactions potential of a 3D molecule. This section presents only an outline of the principal in silica methods since this subject was recently reviewed in detail [33, 34]. [Pg.92]

Dmg distribution into tissue reservoirs depends on the physicochemical properties of the dmg. Tissue reservoirs include fat, bone, and the principal body organs. Access of dmgs to these reservoirs depends on partition coefficient, charge or degree of ionization at physiological pH, and extent of protein binding. Thus, lipophilic molecules accumulate in fat reservoirs and this accumulation can alter considerably both the duration and the concentration—response curves of dmg action. Some dmgs may accumulate selectively in defined tissues, for example, the tetracycline antibiotics in bone (see Antibiotics,tetracyclines). [Pg.269]

Catalyst Cation. The logarithms of extraction constants for symmetrical tetra- -alkylammonium salts (log rise by ca 0.54 per added C atom. Although absolute numerical values for extraction coefficients are vastly different in various solvents and for various anions, this relation holds as a first approximation for most solvent—water combinations tested and for many anions. It is important to note, however, that the lipophilicity of phenyl and benzyl groups carrying ammonium salts is much lower than the number of C atoms might suggest. Benzyl is extracted between / -propyl and -butyl. The extraction constants of tetra- -butylammonium salts are about 140 times larger than the constants for tetra- -propylammonium salts of the same anion in the same solvent—water system. [Pg.187]

The partition coefficient P, defined as the equilibrium concentration of the compound in n-octanol divided by that in the aqueous phase, has been measured for pyrazole and indazole (B-79MI40416). It was found that log F = 0.13-0.26 for pyrazole and 1.82 for indazole, clearly showing the greater hydrophobicity (lipophilicity) of the indazole ring, due to the benzenoid moiety. [Pg.207]

A chemical must have certain physicochemical properties to elicit an endocrine disrupting effect. For example, the ability to enter the body and to cross the cell membrane into the cellular medium requires a degree of lipophilicity. Fipophilic potentials may be compared by reference to the chemical s octanol-water coefficient (usually expressed as log K ). This property, together with molecular size and chemical structure, has an important influence on the bioacciimiilation... [Pg.76]

The lipophilicity (7 m value) and specific hydrophobic surface area of pyrido[l,2-a]pyrazinium-l-olates 342 and -3-olate 343, and l-(4-chlorophe-nyl)-l-hydroxy-l,2-dihydropyrazino[2,l-a]isoquinolinium salt (344) has been measured by reversed-phase thin-layer chromatography (98MI13). Partition coefficient (log/ ) of 9-bromo-5-[(A-phenylaminocarbonyl)-methyl]-l,2,3,5,6,7-hexahydropyrido[l,2,3- fc]quinoxaline-2,3-dione was calculated to be 2.78 (97JMC4053). [Pg.298]

The ending caine stems from cocaine, the first clinically employed local anaesthetic. Procaine and tetracaine are ester-linked substances, the others are amides. Amide bonded local anaesthetics usually contain two i s in their name, ester-bonded only one. In the structure drawings, the lipophilic portion of the molecule is depicted at the left, the amine at the right. The asterisk marks the chiral centre of the stereoisomeric drugs. Lipid solubility is given as the logarithm of the water octanol partition coefficient, log(P). [Pg.702]

An important factor in determining the course of uptake, transport, and distribution of xenobiotics is their polarity. Compounds of low polarity tend to be lipophilic and of low water solubility. Compounds of high polarity tend to be hydrophilic and of low fat solubility. The balance between the lipophilicity and hydrophilicity of any compound is indicated by its octanol-water partition coefficient (K J, a value determined when equilibrium is reached between the two adjoining phases ... [Pg.21]

Compounds with high values are of low polarity and are described as being lipophilic and hydrophobic. Compounds with high values are of high polarity and are hydrophilic. Although the partition coefficient between octanol and water is... [Pg.21]

An analysis of partition coefficient data and drug solubilities in PCL and silicone rubber has been used to show how the relative permeabilities in PCL vary with the lipophilicity of the drug (58,59). The permeabilities of copolymers of e-caprolactone and dl-lactic acid have also been measured and found to be relatively invariant for compositions up to 50% lactic acid (67). The permeability then decreases rapidly to that of the homopolymer of dl-lactic acid, which is 10 times smaller than the value of PCL. These results have been discussed in terms of the polymer morphologies. [Pg.86]

In 1868 two Scottish scientists, Crum Brown and Fraser [4] recognized that a relation exists between the physiological action of a substance and its chemical composition and constitution. That recognition was in effect the birth of the science that has come to be known as quantitative structure-activity relationship (QSAR) studies a QSAR is a mathematical equation that relates a biological or other property to structural and/or physicochemical properties of a series of (usually) related compounds. Shortly afterwards, Richardson [5] showed that the narcotic effect of primary aliphatic alcohols varied with their molecular weight, and in 1893 Richet [6] observed that the toxicities of a variety of simple polar chemicals such as alcohols, ethers, and ketones were inversely correlated with their aqueous solubilities. Probably the best known of the very early work in the field was that of Overton [7] and Meyer [8], who found that the narcotic effect of simple chemicals increased with their oil-water partition coefficient and postulated that this reflected the partitioning of a chemical between the aqueous exobiophase and a lipophilic receptor. This, as it turned out, was most prescient, for about 70% of published QSARs contain a term relating to partition coefficient [9]. [Pg.470]

The importance of lipophilicity to bitterness has been well established, both directly and indirectly. The importance of partitioning effects in bitterness perception has been stressed by Rubin and coworkers, and Gardner demonstrated that the threshold concentration of bitter amino acids and peptides correlates very well with molecular connectivity (which is generally regarded as a steric parameter, but is correlated with the octanol-water partition coefficient ). Studies on the surface pressure in monolayers of lipids from bovine, circumvallate papillae also indicated that there is a very good correlation between the concentration of a bitter compound that is necessary in order to give an increase in the surface pressure with the taste threshold in humans. These results and the observations of others suggested that the ability of bitter compounds to penetrate cell membranes is an important factor in bitterness perception. [Pg.318]

Further supporting evidence for the importance of lipophilicity in bitter response is provided by the taste of isohumulone (118), the principal, bitter-tasting component of beer, and some of its derivatives. Isohumulone can exist in both cis and trans forms. Clarke and Hilderbrand reported that the cis form, having a partition coefficient of 0.78, is more bitter than... [Pg.319]

Absorption of trichloroethylene in humans is very rapid upon inhalation exposure. Trichloroethylene has a blood/gas partition coefficient that is comparable to some other anesthetic gases (i.e., chloroform, diethylether, and methoxyfluorene), but it is much more lipophilic than these gases. As a consequence of these properties, the initial rate of uptake of inhaled trichloroethylene in humans is quite high, with the rate leveling off after a few hours of exposure (Fernandez et al. 1977). The absorbed dose is proportional to the inhaled trichloroethylene concentration, duration of exposure, and alveolar ventilation rate at a given inhaled air concentration (Astrand and Ovrum 1976). Several studies indicate that 37-64% of inhaled trichloroethylene is taken up from the lungs (Astrand and Ovrum 1976 Bartonicek 1962 Monster et al. 1976). [Pg.110]

A clear trend was also apparent among the physicochemical properties, since the lipophilicity range yielded the best correlations for both ApKj b and ApKj, while the dipole space yielded the lowest. Interestingly, all significant correlation coefficients were posihve, implying that tti-AR selectivities are mainly proportional to variations in physicochemical properties, as expressed mainly by range. [Pg.20]

Octanol-water partition (log P) and distribution (log D) coefficients are widely used to make estimates for membrane penetration and permeability, including gastrointestinal absorption [77, 78], BBB crossing [60, 69] and correlations to pharmacokinetic properties [1]. The two major components of lipophilicity are molecular size and H-bonding [57], which each have been discussed above (see Sections 2.5 and 2.6). [Pg.35]

Lipophilicity represents the affinity of a molecule or a moiety for a lipophilic environment. It is commonly measured by its distribution behavior in a biphasic system, either liquid-liquid (e.g. partition coefficient in 1-octanol-water) or solid-liquid (retention on reversed-phase high-performance liquid chromatography or thin-layer chromatography system). [Pg.35]

Another relatively new lipophilicity scale proposed for use in ADME studies is based on MEKC [106]. A further variant is called BMC and uses mobile phases of Brij35 [polyoxyethylene(23)lauryl ether] [129]. Similarly, the retention factors of 16 P-blockers obtained with micellar chromatography with sodium dodecyl sulfate as micelle-forming agent correlates well with permeability coefficients in Caco-2 monolayers and apparent permeability coefficients in rat intestinal segments [130]. [Pg.39]

In the traditional shake-flask method, the apparent partition coefficient, log D, is measured, usually at pH 7.4 (sometimes at pH 6.5). Different buffers are used to control each pH used in the determinations [70]. Usually, in a comprehensive study, several pH measurements are made, and values of log are plotted against the pH. This plot is often called the lipophilicity profile . One can determine the true partition coefficients (log P ) and the ionization constants from the features in such a curve. [Pg.65]

A comparahve analysis of coefficients and descriptors clarifies the relationship between lipophilicity and hydrophobicity (Y in Eq. 4 is the molar volume which assesses the solute s capacity to elicit nonpolar interactions (i.e. hydrophobic forces) which, as also clearly stated in the International Union of Pure and Applied Chemistry definitions [3] are not synonyms but, when only neutral species are concerned, may be considered as interchangeable. In the majority of partitioning systems, the lipophilicity is chiefly due to the hydrophobicity, as is clearly indicated by the finding that the product of numerical values of the descriptors V and of the coefficient v is larger in absolute value than the corresponding product of other couples of descriptors/coefficients [9]. This explains the very common linear rela-... [Pg.323]

Lipophilicity is intuitively felt to be a key parameter in predicting and interpreting permeability and thus the number of types of lipophilicity systems under study has grown enormously over the years to increase the chances of finding good mimics of biomembrane models. However, the relationship between lipophilicity descriptors and the membrane permeation process is not clear. Membrane permeation is due to two main components the partition rate constant between the lipid leaflet and the aqueous environment and the flip-flop rate constant between the two lipid leaflets in the bilayer [13]. Since the flip-flop is supposed to be rate limiting in the permeation process, permeation is determined by the partition coefficient between the lipid and the aqueous phase (which can easily be determined by log D) and the flip-flop rate constant, which may or may not depend on lipophilicity and if it does so depend, on which lipophilicity scale should it be based ... [Pg.325]

Relationships between lipophilicity and retention parameters obtained by RPLC methods using isocratic or gradient condition are reviewed. Advantages and limitations of the two approaches are also pointed out, and general guidelines to determine partition coefficients in 1-octanol-water are proposed. Finally, more recent literature data on Hpophilicity determination by capillary electrophoresis of neutral compounds and neutral forms of ionizable compounds are compiled. Quotation is restricted to key references for every method presented - an exhaustive listing is only given for the last few years. [Pg.332]

Sangster, J. Octanol-Water Partition Coefficients Fundamentals and Physical Chemistry, Wiley, Chichester, 1997. n Valko, K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J. Chromatogr. A 2004, 1037, 299-310. [Pg.350]

The quantitative descriptor of lipophilicity, the partition coefficient P, is defined as the ratio of the concentrations of a neutral compound in organic and aqueous phases of a two-compartment system under equilibrium conditions. It is commonly used in its logarithmic form, logP. Whereas 1-octanol serves as the standard organic phase for experimental determination, other solvents are applied to better mimic special permeation conditions such as the cyclohexane-water system for BBB permeation. Measurement of log P is described in Chapters 12 and 13 as well as in Ref [22]. [Pg.358]

A CRO may also allow for the in-house introduction of specialized lipophilic scales by transferring routine measurements. While the octanol-water scale is widely applied, it may be advantageous to utilize alternative scales for specific QSAR models. Solvent systems such as alkane or chloroform and biomimetic stationary phases on HPLC columns have both been advocated. Seydel [65] recently reviewed the suitabihty of various systems to describe partitioning into membranes. Through several examples, he concludes that drug-membrane interaction as it relates to transport, distribution and efficacy cannot be well characterized by partition coefficients in bulk solvents alone, including octanol. However, octanol-water partition coefficients will persist in valuable databases and decades of QSAR studies. [Pg.420]


See other pages where Coefficient lipophilicity is mentioned: [Pg.30]    [Pg.338]    [Pg.309]    [Pg.30]    [Pg.338]    [Pg.309]    [Pg.492]    [Pg.685]    [Pg.48]    [Pg.226]    [Pg.354]    [Pg.195]    [Pg.232]    [Pg.164]    [Pg.22]    [Pg.183]    [Pg.23]    [Pg.541]    [Pg.618]    [Pg.204]    [Pg.20]    [Pg.34]    [Pg.35]    [Pg.146]    [Pg.332]    [Pg.392]    [Pg.415]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Lipophilic-hydrophilic balance Partition coefficients)

Lipophilicity distribution coefficient

Lipophilicity partition coefficient

Octanol: water partition coefficients lipophilicity/hydrophilicity

Partition coefficient intrinsic lipophilicity

Partition coefficients lipophilicity profiles

The Measurement of Partition Coefficients and Related Lipophilicity Parameters

© 2024 chempedia.info