Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipid applications

Mixing fatty acids with fatty bases can dissolve films as the resulting complexes become water-soluble however, in some cases the mixed Langmuir film is stabilized [128]. The application of an electric field to a mixed lipid monolayer can drive phase separation [129]. [Pg.557]

The relation between the architecture of the molecules and the spatial morphology into which they assemble has attracted longstanding interest because of their importance in daily life. Lipid molecules are important constituents of the cell membrane. Amphiphilic molecules are of major importance for teclmological applications (e.g., in detergents and the food industry). [Pg.2376]

We are all familiar with tire tliree states of matter gases, liquids and solids. In tire 19tli century the liquid crystal state was discovered [1 and 2] tliis can be considered as tire fourtli state of matter [3].The essential features and properties of liquid crystal phases and tlieir relation to molecular stmcture are discussed here. Liquid crystals are encountered in liquid crystal displays (LCDs) in digital watches and otlier electronic equipment. Such applications are also considered later in tliis section. Surfactants and lipids fonn various types of liquid crystal phase but this is discussed in section C2.3. This section focuses on low-molecular-weight liquid crystals, polymer liquid crystals being discussed in tire previous section. [Pg.2542]

Anotlier metliod applicable to interfaces is tlie detennination of tlie partial molecular area (7 of a biopolynier partitioning into a lipid monolayer at tlie water-air interface using tlie Langmuir trough [28]. The first step is to record a series of pressure 71-area (A) isotlienns witli different amounts of an amphiphilic biopolynier spread at tlie interface. [Pg.2819]

In other applications of CT, orally administered barium sulfate or a water-soluble iodinated CM is used to opacify the GI tract. Xenon, atomic number 54, exhibits similar x-ray absorption properties to those of iodine. It rapidly diffuses across the blood brain barrier after inhalation to saturate different tissues of brain as a function of its lipid solubility. In preliminary investigations (99), xenon gas inhalation prior to brain CT has provided useful information for evaluations of local cerebral blood flow and cerebral tissue abnormalities. Xenon exhibits an anesthetic effect at high concentrations but otherwise is free of physiological effects because of its nonreactive nature. [Pg.469]

In practice a few iodine crystals are usually placed on the bottom of a dry, closed trough chamber. After the chamber has become saturated with violet iodine vapor the solvent-free plates are placed in the chamber for 30 s to a few minutes. The iodine vapor condenses on the TLC layers and is enriched in the chromatogram zones. Iodine vapor is a universal detector, there are examples of its application for all types of substances, e.g. amino acids, indoles, alkaloids, steroids, psychoactive substances, lipids (a tabular compilation would be too voluminous to include in this section). [Pg.46]

Selected applications of coupled SEE-SEC consider the analysis of tocopherols in plants and oil by-products (65) or the analysis of lipid-soluble vitamins (66) by using a dynamic on-line SEE-SEC coupling, integrated in the SE chromatograph, based on the use of micropacked columns. [Pg.241]

A method which uses supercritical fluid/solid phase extraction/supercritical fluid chromatography (SE/SPE/SEC) has been developed for the analysis of trace constituents in complex matrices (67). By using this technique, extraction and clean-up are accomplished in one step using unmodified SC CO2. This step is monitored by a photodiode-array detector which allows fractionation. Eigure 10.14 shows a schematic representation of the SE/SPE/SEC set-up. This system allowed selective retention of the sample matrices while eluting and depositing the analytes of interest in the cryogenic trap. Application to the analysis of pesticides from lipid sample matrices have been reported. In this case, the lipids were completely separated from the pesticides. [Pg.241]

Although urushiol possesses an interesting structure for transformation into speciality polymers, no attempt has been reported. Notwithstanding its applications in a specified area, it appears that it is not properly put to use as it can be converted to polymers with better properties. The possibilities for such conversions into high-performance polymers are illustrated by cardanol, a phenolic lipid of related structure obtained from Ana-cardium occidentale. [Pg.421]

McClure, G.L., et. al. "Application of Computerized Quantitative Infrared Spectroscopy to the Determination of the Principal Lipids Found in Blood Serum", Computerized Quantitative Infrared Analysis, ASTM STP 934, G.L. McClure, Ed. American Society for Testing and Materials, Philadelphia, 1987, 131-154. [Pg.192]

HSV2 (herpes simplex virus 2), which causes significant morbidity and is an important cofactor for the transmission of HIV infection was recently targeted in a mouse model by local application of siRNA mixed with lipids. The results suggested that siRNA could work as active components of microbicides to prevent viral infection or transmission [2]. [Pg.1093]

The sulfosuccinate monoester based on undecylenic acid monoethanolamide and its antimicrobial properties was described shortly before [12]. In comparison of shampoos containing different antidandruff agents, this sulfosuccinate s performance was favorably evaluated [13]. It was neutral with respect to lipid replacement on scalp and forehead after application of the respective shampoo. This undecylenic acid-based sulfosuccinate was also found to reduce dandruff formation in another investigation [14]. [Pg.504]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

Figure 10.46 Application of ThrA catalysis for the stereoselective synthesis of dihydroxyprolines from glyceraldehyde, and an adenylamino acid for RNA mimics (a). ThrA based preparation of precursors to the immunosuppressive lipid mycestericin and the antibiotic thiamphenicol (b). Figure 10.46 Application of ThrA catalysis for the stereoselective synthesis of dihydroxyprolines from glyceraldehyde, and an adenylamino acid for RNA mimics (a). ThrA based preparation of precursors to the immunosuppressive lipid mycestericin and the antibiotic thiamphenicol (b).
The adrenals of rabbits given a single dermal dose of 100 mg/kg of endosulfan exhibited microscopic changes, including swollen cells with foamy cytoplasm and eccentric nuclei (Gupta and Chandra 1975). Also, release of lipids from the adrenal cortex was observed in rats that died following daily application... [Pg.116]


See other pages where Lipid applications is mentioned: [Pg.542]    [Pg.223]    [Pg.226]    [Pg.229]    [Pg.177]    [Pg.67]    [Pg.213]    [Pg.542]    [Pg.223]    [Pg.226]    [Pg.229]    [Pg.177]    [Pg.67]    [Pg.213]    [Pg.119]    [Pg.2363]    [Pg.41]    [Pg.43]    [Pg.352]    [Pg.353]    [Pg.34]    [Pg.466]    [Pg.485]    [Pg.487]    [Pg.232]    [Pg.419]    [Pg.420]    [Pg.177]    [Pg.9]    [Pg.3]    [Pg.4]    [Pg.404]    [Pg.323]    [Pg.945]    [Pg.55]    [Pg.326]    [Pg.201]    [Pg.286]    [Pg.43]    [Pg.100]    [Pg.100]    [Pg.263]   
See also in sourсe #XX -- [ Pg.318 , Pg.321 ]




SEARCH



© 2024 chempedia.info