Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lime causticization process

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]

Additional operations essential to commercial bauxite processing are steam and power generation, heat recovery to minimise energy consumption, process liquor evaporation to maintain a water balance, impurity removal from process liquor streams, classification and washing of ttihydrate, lime caustication of sodium carbonate [497-19-8] to sodium hydroxide [1310-73-2] repair and maintenance of equipment, rehabiUtation of mine and residue disposal sites, and quaUty and process control. Each operation in the process can be carried out in a variety of ways depending upon bauxite properties and optimum economic tradeoffs. [Pg.134]

Caustic soda is manufactured by the lime-soda process. [Pg.1162]

Metallic ions in soluble form are commonly removed from wastewater by conversion to an insoluble form followed by separation processes such as flocculation, sedimentation, and filtration. Chemicals such as lime, caustic soda, sulfides, and ferrous or ferric compounds have been used for metals separation. Polymer is usually added to aid in flocculation and sedimentation. [Pg.532]

FIGURE 7.3 Flowsheet giving the details of a continuous causticization process for the production of sodium hydroxide. Slaker water is normally derived from lime mud washing. The process may also be operated in a batch mode requiring a smaller number of process vessels, and with or without lime recycle. [Pg.215]

In the early 1900s, caustic soda was manufactured by the lime-soda process (Section 2.4.1), even when caustic was available from the chlor-alkali electrolysis process, as there was not much demand for chlorine. During World War I, chlorine demand dramatically increased to provide chlorine for the production of various chemicals. This led to an increased share of the market for caustic from the electrolytic process. World War II had a similar effect. Nowadays, nearly all caustic soda is a coproduct of electrolytic chlorine. [Pg.34]

Mars red is one of the mars pigments (. v.), developed during the eighteenth century and manufactured by the aqueous precipitation of iron salts (sulfates, chlorides, nitrates and acetates) with an alkali (lime, caustic soda (NaOH), potash, etc.). Mars red was produced by roasting the precipitate produced by this process,... [Pg.254]

The only caustic soda production process besides electrolysis is the soda—lime process involving the reaction of lime with soda ash ... [Pg.514]

Sodium Hydroxide. Before World War 1, nearly all sodium hydroxide [1310-93-2], NaOH, was produced by the reaction of soda ash and lime. The subsequent rapid development of electrolytic production processes, resulting from growing demand for chlorine, effectively shut down the old lime—soda plants except in Eastern Europe, the USSR, India, and China. Recent changes in chlorine consumption have reduced demand, putting pressure on the price and availabiHty of caustic soda (NaOH). Because this trend is expected to continue, there is renewed interest in the lime—soda production process. EMC operates a 50,000 t/yr caustic soda plant that uses this technology at Green River it came onstream in mid-1990. Other U.S. soda ash producers have aimounced plans to constmct similar plants (1,5). [Pg.527]

In 1990, appioximately 66,000 metric tons of alumina trihydiate [12252-70-9] AI2O2 3H20, the most widely used flame retardant, was used to inhibit the flammabihty of plastics processed at low temperatures. Alumina trihydrate is manufactured from either bauxite ore or recovered aluminum by either the Bayer or sinter processes (25). In the Bayer process, the bauxite ore is digested in a caustic solution, then filtered to remove siUcate, titanate, and iron impurities. The alumina trihydrate is recovered from the filtered solution by precipitation. In the sinter process the aluminum is leached from the ore using a solution of soda and lime from which pure alumina trihydrate is recovered (see Aluminum compounds). [Pg.458]

Decomposition of Zircon. Zircon sand is inert and refractory. Therefore the first extractive step is to convert the zirconium and hafnium portions into active forms amenable to the subsequent processing scheme. For the production of hafnium, this is done in the United States by carbochlorination as shown in Figure 1. In the Ukraine, fluorosiUcate fusion is used. Caustic fusion is the usual starting procedure for the production of aqueous zirconium chemicals, which usually does not involve hafnium separation. Other methods of decomposing zircon such as plasma dissociation or lime fusions are used for production of some grades of zirconium oxide. [Pg.440]

Rotary kilns and, to a lesser extent, Fluo-SoHds kilns are used to calcine a wet precipitated calcium carbonate filter cake in the kraft or sulfate paper-pulp process (15). Lime is regenerated for use as a causticization reagent in recovering caustic soda for pulp digestion. Losses in lime recovery are replaced by purchased lime (see Paper Pulp). [Pg.173]

Alkalies. In the 1960s, 3.2-34 x 10 t /yr of lime was captively produced by the U.S. alkaH industry for manufacturing soda ash and sodium bicarbonate via the Solvay process. Electrolytic process caustic soda and natural soda ash (trona) from Wyoming have largely replaced the Solvay process. Three of the trona producers in Wyoming now purchase quicklime for producing caustic soda. [Pg.178]

Naphthalenesulfonic Acid. The sulfonation of naphthalene with excess 96 wt % sulfuric acid at < 80°C gives > 85 wt % 1-naphthalenesulfonic acid (a-acid) the balance is mainly the 2-isomer (P-acid). An older German commercial process is based on the reaction of naphthalene with 96 wt % sulfuric acid at 20—50°C (13). The product can be used unpurifted to make dyestuff intermediates by nitration or can be sulfonated further. The sodium salt of 1-naphthalenesulfonic acid is required, for example, for the conversion of 1-naphthalenol (1-naphthol) by caustic fusion. In this case, the excess sulfuric acid first is separated by the addition of lime and is filtered to remove the insoluble calcium sulfate the filtrate is treated with sodium carbonate to precipitate calcium carbonate and leave the sodium l-naphthalenesulfonate/7J(9-/4-J7 in solution. The dry salt then is recovered, typically, by spray-drying the solution. [Pg.489]

Causticization, the reaction of hydrated lime [1305-62-0], Ca(OH)2, with sodium carbonate to regenerate sodium hydroxide and precipitate calcium carbonate, is an important part of the Bayer process chemistry. [Pg.134]

The chlorohydrin process involves reaction of propylene and chlorine in the presence of water to produce the two isomers of propylene chlorohydrin. This is followed by dehydrochlorination using caustic or lime to propylene oxide and salt. The Dow Chemical Company is the only practitioner of the chlorohydrin process in North America. However, several companies practice the chlorohydrin process at more than 20 locations in Germany, Italy, Bra2il, Japan, Eastern Europe, and Asia. [Pg.136]


See other pages where Lime causticization process is mentioned: [Pg.478]    [Pg.470]    [Pg.56]    [Pg.96]    [Pg.517]    [Pg.49]    [Pg.257]    [Pg.66]    [Pg.478]    [Pg.84]    [Pg.212]    [Pg.215]    [Pg.478]    [Pg.224]    [Pg.7177]    [Pg.40]    [Pg.254]    [Pg.255]    [Pg.255]    [Pg.638]    [Pg.63]    [Pg.435]    [Pg.514]    [Pg.12]    [Pg.178]    [Pg.179]    [Pg.134]    [Pg.136]    [Pg.137]   
See also in sourсe #XX -- [ Pg.2 , Pg.472 ]




SEARCH



Causticity

Causticization

Liming

© 2024 chempedia.info