Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lifetimes semiconductors

In electronics, a well-established procedure to make statements on the sign of the electronic carriers is establishing the appropriate junctions (cf. diodes). The transformability of the semiconductor experiments to ion conductors suffers from the fact that the situation in ion conductors is more related to the situation in relaxation type semiconductors than to lifetime semiconductors note that only the latter shows the typical significant electronic effects such as in diodes or transistors. Nonetheless setting up ionic diodes and ionic transistors may be a worthwhile task for the future. (One such attempt to find out the nature of the ionic carriers (Oj or Vq ) in PbO by diode effects, viz. by a contact to the vacancy conductive YSZ, has been reported in Ref.217)... [Pg.120]

For forward and reverse voltages applied, the system offers the following possibilities, as long as we are dealii with a conventional ( lifetime ) semiconductor, i. e. one in which the minority carrier lifetime is greater than the dielectric relaxation time. [Pg.319]

Schematic relationship between local field, the free carrier concentration increments Ap and An and distance x from the contact, for sufficiently high levels of minority carrier injection into an n-type (relaxation or lifetime) semiconductor containing a sufficient number of traps. [After Popescu and Henisch.(17)]... Schematic relationship between local field, the free carrier concentration increments Ap and An and distance x from the contact, for sufficiently high levels of minority carrier injection into an n-type (relaxation or lifetime) semiconductor containing a sufficient number of traps. [After Popescu and Henisch.(17)]...
Iron s mobility can be so high, that local equilibrium may be violated during transport processes. As far as the distinction between relaxation semiconductors and lifetime semiconductors is concerned, see footnote 160. [Pg.242]

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

Radiative recombination of minority carriers is tlie most likely process in direct gap semiconductors. Since tlie carriers at tlie CB minimum and tlie VB maximum have tlie same momentum, very fast recombination can occur. The radiative recombination lifetimes in direct semiconductors are tlius very short, of tlie order of tlie ns. The presence of deep-level defects opens up a non-radiative recombination patli and furtlier shortens tlie carrier lifetime. [Pg.2883]

The situation is very different in indirect gap materials where phonons must be involved to conserve momentum. Radiative recombination is inefficient, resulting in long lifetimes. The minority carrier lifetimes in Si reach many ms, again in tire absence of defects. It should be noted tliat long minority carrier lifetimes imply long diffusion lengtlis. Minority carrier lifetime can be used as a convenient quality benchmark of a semiconductor. [Pg.2884]

In additions to improvements in Si, a variety of devices based on compound semiconductors can be expected. Blue lasers witli high brightness and long operating lifetimes already exist in tlie laboratory. LEDs are likely to be used for all lighting purjDoses. The bandwidtli of optical communications will continue to increase witli ever faster semiconductor lasers. [Pg.2896]

Thushigh internal quantum efficiency requires short radiative and long nonradiative lifetimes. Nonradiative lifetimes are generally a function of the semiconductor material quaUty and are typically on the order of microseconds to tens of nanoseconds for high quahty material. The radiative recombination rate, n/r, is given by equation 4 ... [Pg.115]

The equihbtium lever relation, np = can be regarded from a chemical kinetics perspective as the result of a balance between the generation and recombination of electrons and holes (21). In extrinsic semiconductors recombination is assisted by chemical defects, such as transition metals, which introduce new energy levels in the energy gap. The recombination rate in extrinsic semiconductors is limited by the lifetime of minority carriers which, according to the equihbtium lever relation, have much lower concentrations than majority carriers. Thus, for a -type semiconductor where electrons are the minority carrier, the recombination rate is /S n/z. An = n — is the increase of the electron concentration over its value in thermal equihbtium, and... [Pg.346]

Cartiers can also be generated in a semiconductor by the absorption of light or injected into the semiconductor from ap—n or Schottky junction. In either case, as soon as the source is removed the density of those excess carriers begins to decrease exponentially with time. The time it takes for the density to be reduced to 1/ of the original value is defined as the carrier lifetime, T. For siUcon, T is typically in the microsecond range. [Pg.531]

Electrical Properties. Generally, deposited thin films have an electrical resistivity that is higher than that of the bulk material. This is often the result of the lower density and high surface-to-volume ratio in the film. In semiconductor films, the electron mobiHty and lifetime can be affected by the point defect concentration, which also affects electromigration. These effects are eliminated by depositing the film at low rates, high temperatures, and under very controUed conditions, such as are found in molecular beam epitaxy and vapor-phase epitaxy. [Pg.529]

Band gaps of semiconductors carrier lifetimes shallow impurity or defect detection sample quality and structure... [Pg.29]

A useftil applicadon of time-dependent PL is the assessment of the quality of thin III-V semiconductor alloy layers and interfaces, such as those used in the fabri-cadon of diode lasers. For example, at room temperature, a diode laser made with high-quality materials may show a slow decay of the acdve region PL over several ns, whereas in low-quality materials nonradiative centers (e.g., oxygen) at die cladding interface can rapidly deplete the free-carder population, resulting in much shorter decay times. Measurements of lifetime are significandy less dependent on external condidons than is the PL intensity. [Pg.380]

Despite the scientific progress and the demonstration of novel device concepts, there was considerable skepticism that semiconducting polymers would ever reach the levels of purity required for long-lifetime commercial devices. In the context of the last 50 years of semiconductor physics, conjugated polymers were often... [Pg.3]

Figure 13. Numerically calculated PMC potential curves from transport equations (14)—(17) without simplifications for different interfacial reaction rate constants for minority carriers (holes in n-type semiconductor) (a) PMC peak in depletion region. Bulk lifetime 10" s, combined interfacial rate constants (sr = sr + kr) inserted in drawing. Dark points, calculation from analytical formula (18). (b) PMC peak in accumulation region. Bulk lifetime 10 5s. The combined interfacial charge-transfer and recombination rate ranges from 10 (1), 100 (2), 103 (3), 3 x 103 (4), 104 (5), 3 x 104 (6) to 106 (7) cm s"1. The flatband potential is indicated. Figure 13. Numerically calculated PMC potential curves from transport equations (14)—(17) without simplifications for different interfacial reaction rate constants for minority carriers (holes in n-type semiconductor) (a) PMC peak in depletion region. Bulk lifetime 10" s, combined interfacial rate constants (sr = sr + kr) inserted in drawing. Dark points, calculation from analytical formula (18). (b) PMC peak in accumulation region. Bulk lifetime 10 5s. The combined interfacial charge-transfer and recombination rate ranges from 10 (1), 100 (2), 103 (3), 3 x 103 (4), 104 (5), 3 x 104 (6) to 106 (7) cm s"1. The flatband potential is indicated.
Other situations may also occur that allow a simple determination of the sensitivity factor. When, for example, a sufficiently negative electrode potential forces all minority carriers to drift into the interior of the semiconductor electrode, where they recombine subject to the bulk lifetime Tfr we will see a limiting PMC signal (given a sufficiently thick electrode). Knowing the photonflux /0 (corrected for reflection), we may expect the following formula to hold ... [Pg.493]

The PMC transient-potential diagrams and the equations derived for PMC transients clearly show that bending of an energy band significantly influences the charge carrier lifetime in semiconductor/electrolyte junctions and that an accurate interpretation of the kinetic meaning of such transients is only possible when the band bending is known and controlled. [Pg.503]

Otherwise, the effect of electrode potential and kinetic parameters as contained in the relevant expression for the PMC signal (21), which controls the lifetime of PMC transients (40), may lead to an erroneous interpretation of kinetic mechanisms. The fact that lifetime measurements of PMC transients largely match the pattern of PMC-potential curves, showing peaks in accumulation and depletion of the semiconductor electrode and a minimum at the flatband potential [Figs. 13, 16-18, 34, and 36(b)], demonstrates that kinetic constants are accessible via PMC transient measurements, as indicated by the simplified relation (40) derived for the depletion layer of an n-type electrode. [Pg.504]

Self-doped polymers, 334 Semicircles, Albery and Mount interpretation of, 584 Semiconductor electrodes with polymer layers, 499 diffusion length in, 492 Semiconductors, lifetime for carriers and, 495... [Pg.642]

Silicon wafer has been extensively used in the semiconductor industry. CMP of silicon is one of the key technologies to obtain a smooth, defect-free, and high reflecting silicon surfaces in microelectronic device patterning. Silicon surface qualities have a direct effect on physical properties, such as breakdown point, interface state, and minority carrier lifetime, etc. Cook et al. [54] considered the chemical processes involved in the polishing of glass and extended it to the polishing of silicon wafer. They presented the chemical process which occurs by the interaction of the silicon layer and the... [Pg.249]

In semiconductors, which have a bandgap, recombination of the excited carriers— return of the electrons from the conduction band to vacancies in the valence band—is greatly delayed, and the lifetime of the excited state is much longer than in metals. Moreover, in n-type semiconductors with band edges bent upward, excess electrons in the conduction band will be driven away from the surface into the semiconductor by the electrostatic held, while positive holes in the valence band will be pushed against the solution boundary (Fig. 29.3). The electrons and holes in the pairs produced are thus separated in space. This leads to an additional stabihzation of the excited state, to the creation of some steady concentration of excess electrons in the conduction band inside the semiconductor, and to the creation of excess holes in the valence band at the semiconductor-solution interface. [Pg.566]


See other pages where Lifetimes semiconductors is mentioned: [Pg.278]    [Pg.278]    [Pg.2209]    [Pg.2883]    [Pg.3035]    [Pg.242]    [Pg.399]    [Pg.115]    [Pg.115]    [Pg.115]    [Pg.422]    [Pg.434]    [Pg.343]    [Pg.350]    [Pg.377]    [Pg.390]    [Pg.583]    [Pg.464]    [Pg.467]    [Pg.476]    [Pg.489]    [Pg.499]    [Pg.520]    [Pg.191]    [Pg.265]    [Pg.116]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Layer deposition lifetime’ semiconductors

Semiconductor carrier lifetime

Sensor lifetime semiconductor

© 2024 chempedia.info