Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis acids, and reactions

However, sulphur trioxide is also a very strong Lewis acid and reaction with hexa-fluoropropene proceeds first by fluoride elimination from the allylic position, presumably via the perfluoroallyl cation [152] (Figure 7.54). [Pg.195]

There are three methods for generating carbocations ionization of a C X lone pair on the heteroatom in a C=X bond with a Lewis acid, and reaction of a C=C 77 bond with a Lewis acid such as H+ or a carbocation. [Pg.109]

To overcome the recognised problem of strong coordination between Lewis acids and reaction products, thienyl ketones, metal salts that are less oxophilic have been employed. The hard/soft mismatch concept was suggested and explored. It was supposed that the softer , in comparison to traditional FC salts, late transition metal centres would not form a kinetically inert complex with hard carbonyl oxygen atoms, and thus catalytic turnover would be improved. Indeed, the application of a Pt(ll)-based catalyst - (PhCN)2PtCl2 - at only 2.5 mol% accompanied by 5 mol% of AgSbFg in boiling dichloromethane allowed the successful acylation of several... [Pg.47]

Soon after the first report of the aldol reaction of silyl enol ethers was disclosed, allylsilanes were reported to show similar reactivity toward aldehydes and ketones when activated by a stoichiometric amount of TiCU (Scheme 3-85). This synthetically important reaction has subsequently become the subject of many synthetic chemists and was improved extensively using various kinds of Lewis acid catalysts. Acyclic transition states are proposed to explain diastereoselectivities of the reaction depending on a Lewis acid and reaction conditions. Particularly, synclinal orientation of reactants is suggested to be more preferable rather than an antiperiplanar one particularly for ( )-allylsilanes based on molecular model studies (Scheme 3-86). High diastereoselectivity observed in the reaction of chiral allylsilanes with aldehydes is understood in terms of this transition state model which is based on the Felkin-type induction (Scheme 3-87). ... [Pg.438]

The regioselectivity benefits from the increased polarisation of the alkene moiety, reflected in the increased difference in the orbital coefficients on carbon 1 and 2. The increase in endo-exo selectivity is a result of an increased secondary orbital interaction that can be attributed to the increased orbital coefficient on the carbonyl carbon ". Also increased dipolar interactions, as a result of an increased polarisation, will contribute. Interestingly, Yamamoto has demonstrated that by usirg a very bulky catalyst the endo-pathway can be blocked and an excess of exo product can be obtained The increased di as tereo facial selectivity has been attributed to a more compact transition state for the catalysed reaction as a result of more efficient primary and secondary orbital interactions as well as conformational changes in the complexed dienophile" . Calculations show that, with the polarisation of the dienophile, the extent of asynchronicity in the activated complex increases . Some authors even report a zwitteriorric character of the activated complex of the Lewis-acid catalysed reaction " . Currently, Lewis-acid catalysis of Diels-Alder reactions is everyday practice in synthetic organic chemistry. [Pg.12]

A combination of the promoting effects of Lewis acids and water is a logical next step. However, to say the least, water has not been a very popular medium for Lewis-acid catalysed Diels-Alder reactions, which is not surprising since water molecules interact strongly with Lewis-acidic and the Lewis-basic atoms of the reacting system. In 1994, when the research described in this thesis was initiated, only one example of Lewis-acid catalysis of a Diels-Alder reaction in water was published Lubineau and co-workers employed lanthanide triflates as a catalyst for the Diels-Alder reaction of glyoxylate to a relatively unreactive diene . No comparison was made between the process in water and in organic solvents. [Pg.31]

Appreciating the beneficial influences of water and Lewis acids on the Diels-Alder reaction and understanding their origin, one may ask what would be the result of a combination of these two effects. If they would be additive, huge accelerations can be envisaged. But may one really expect this How does water influence the Lewis-acid catalysed reaction, and what is the influence of the Lewis acid on the enforced hydrophobic interaction and the hydrogen bonding effect These are the questions that are addressed in this chapter. [Pg.44]

The reaction between 2.4 and 2.5 yields four products two enantiomeric endo products and two enantiomeric exo products. In this section the effect of the solvent, the Lewis-acid and the substituents on the endo-exo selectivity are described. Chapter 3 will mainly focus on aspects dealing with the enantioselectivity of the reaction. [Pg.61]

The use of dienophile 5.1 also allows study of the effect of micelles on the Lewis-acid catalysed reaction. These studies are described in Section 5.2.2. and represent the first in-depth study of Lewis-acid catalysis in conjunction with micellar catalysis , a combination that has very recently also found application in synthetic organic chemistry . ... [Pg.132]

First of all, given the well recognised promoting effects of Lewis-acids and of aqueous solvents on Diels-Alder reactions, we wanted to know if these two effects could be combined. If this would be possible, dramatic improvements of rate and endo-exo selectivity were envisaged Studies on the Diels-Alder reaction of a dienophile, specifically designed for this purpose are described in Chapter 2. It is demonstrated that Lewis-acid catalysis in an aqueous medium is indeed feasible and, as anticipated, can result in impressive enhancements of both rate and endo-exo selectivity. However, the influences of the Lewis-acid catalyst and the aqueous medium are not fully additive. It seems as if water diminishes the catalytic potential of Lewis acids just as coordination of a Lewis acid diminishes the beneficial effects of water. Still, overall, the rate of the catalysed reaction... [Pg.161]

In summary, the work in this thesis provides an overview of what can be achieved with Lewis-acid and micellar catalysis for Diels-Alder reactions in water as exemplified by the reaction of3-phenyl-l-(2-pyridyl)-2-propene-l-ones with cyclopentadiene. Extension of the observed beneficial effect of water on rates and particularly enantioselectivities to other systems is envisaged. [Pg.163]

Turning the argument around reactions that do not involve proton transfer steps will only experience a significant effect of the Lewis acids if a direct interaction exists between catalyst and reactant. The conventional Diels-Alder reaction is a representative of this class of reactions. As long as monodentate reactants are used, the effects of Lewis acids on this reaction do not exceed the magnitude expected for simple salt effects, i.e. there are no indications for a direct interaction between Lewis-acid and substrate. [Pg.164]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

As expected, the solvent has a significant effect on the endo-exo selectivity of the uncatalysed Diels-Alder reaction between 1 and 2. In contrast, the corresponding effect on the Lewis-acid catalysed reaction is small. There is no beneficial effect of water on the endo-exo selectivity of the catalysed Diels-Alder reaction. The endo-exo selectivity in water is somewhat diminished relative to that in ethanol and acetonitrile. [Pg.174]

Reactions of another class are catalyzed by Pd(II) compounds which act as Lewis acids, and are treated in Chapter 5 and partly in Chapter 4. From the above-mentioned explanation, the reactions catalyzed by Pd(0) and Pd(II) are clearly different mechanistically. In this book the stoichiometric and catalytic reactions are classified further according to reacting substrates. However, this classification has some problems, viz. it leads to separate treatment of some unit reactions in different chapters. The carbonylation of alkenes is an example. Oxidative carbonylation of alkenes is treated in Chapter 3 and hydrocar-bonylation in Chapter 4. [Pg.18]

Bromination is catalyzed by Lewis acids, and a study of the kinetics of bromination of benzene and toluene in the presence of aluminum chloride has been reported. Toluene is found to be about 35 times more reactive than benzene under these conditions. The catalyzed reaction thus shows a good deal less substrate selectivity than the uncatalyzed reaction, as would be expected on the basis of the greater reactivity of the aluminum chloride-bromine complex. [Pg.578]

If we apply Lewis s definitions nariowly, we can write an equation for the reaction between a Lewis acid and a Lewis base as ... [Pg.45]

A large number of Brpnsted and Lewis acid catalysts have been employed in the Fischer indole synthesis. Only a few have been found to be sufficiently useful for general use. It is worth noting that some Fischer indolizations are unsuccessful simply due to the sensitivity of the reaction intermediates or products under acidic conditions. In many such cases the thermal indolization process may be of use if the reaction intermediates or products are thermally stable (vide infra). If the products (intermediates) are labile to either thermal or acidic conditions, the use of pyridine chloride in pyridine or biphasic conditions are employed. The general mechanism for the acid catalyzed reaction is believed to be facilitated by the equilibrium between the aryl-hydrazone 13 (R = FF or Lewis acid) and the ene-hydrazine tautomer 14, presumably stabilizing the latter intermediate 14 by either protonation or complex formation (i.e. Lewis acid) at the more basic nitrogen atom (i.e. the 2-nitrogen atom in the arylhydrazone) is important. [Pg.117]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

In 1994 Yamamoto et al. developed a novel catalyst which they termed a "Brmsted acid-assisted chiral Lewis acid" (BLA) [10] (Scheme 1.14, Table 1.3). The catalyst 7 was prepared from (R)-3,3 -dihydroxyphenyl)-2,2 -dihydroxy-l,l -binaphthyl by reaction with B(OMe)3 and removal of methanol [10a, dj. The Brmsted acid is essential for both the high reactivity of the Lewis acid and the high enantioselectivity - the... [Pg.12]


See other pages where Lewis acids, and reactions is mentioned: [Pg.372]    [Pg.112]    [Pg.304]    [Pg.271]    [Pg.591]    [Pg.533]    [Pg.232]    [Pg.372]    [Pg.112]    [Pg.304]    [Pg.271]    [Pg.591]    [Pg.533]    [Pg.232]    [Pg.65]    [Pg.47]    [Pg.54]    [Pg.92]    [Pg.107]    [Pg.161]    [Pg.165]    [Pg.175]    [Pg.550]    [Pg.298]    [Pg.351]    [Pg.383]    [Pg.72]    [Pg.74]    [Pg.334]    [Pg.205]    [Pg.163]    [Pg.89]    [Pg.247]    [Pg.263]    [Pg.114]    [Pg.502]   
See also in sourсe #XX -- [ Pg.953 ]




SEARCH



Achiral Bronsted and Lewis Acid-promoted Reactions

Acidity Lewis and

And Lewis acids

Combination of Enamine Catalysis and Lewis Acids in SN1-Type Reactions

Lewis reactions

© 2024 chempedia.info