Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylsilanes chiral

The cyclohexyloxy(dimethyl)silyl unit in 8 serves as a hydroxy surrogate and is converted into an alcohol via the Tamao oxidation after the allylboration reaction. The allylsilane products of asymmetric allylboration reactions of the dimethylphenylsilyl reagent 7 are readily converted into optically active 2-butene-l, 4-diols via epoxidation with dimethyl dioxirane followed by acid-catalyzed Peterson elimination of the intermediate epoxysilane. Although several chiral (Z)-y-alkoxyallylboron reagents were described in Section 1.3.3.3.3.1.4., relatively few applications in double asymmetric reactions with chiral aldehydes have been reported. One notable example involves the matched double asymmetric reaction of the diisopinocampheyl [(Z)-methoxy-2-propenyl]boron reagent with a chiral x/ -dialkoxyaldehyde87. [Pg.307]

Carbon-Chiral Allylsilanes by Asymmetric Grignard Cross-Coupling... [Pg.110]

To a mixture of vinyl bromide (40 mmol) and the catalyst dichloro-[(R)-Af,N-dimethyl-l-[(.S)-2-(diphenylphosphino)ferrocenyl]ethylamine]-palladium(n) (0.2 mmol) was added an ethereal solution of [a-(trimethyl-silyl)benzyl]magnesium bromide (0.6-1 m, 80 mmol) at —78 °C. The mixture was stirred at 30 °C for 4 days, and then cooled to 0 °C and hydrolysed with dilute aqueous HC1 (3 m). The organic layer was separated, and the aqueous layer was re-extracted with ether. The combined organic extracts were washed with saturated sodium hydrogen carbonate solution and water, and dried. Concentration and distillation gave the chiral allylsilane (79%, 66% ee), b.p. 55°C/0.4mmHg. [Pg.110]

Other reactions not described here are formal [3 -i- 2] cycloadditions of a,p-unsaturated acyl-fluorides with allylsilanes [116], or the desymmetrization of meso epoxides [117]. For many of the reactions shown above, the planar chiral Fe-sandwich complexes are the first catalysts allowing for broad substrate scope in combination with high enantioselectivities and yields. Clearly, these milestones in asymmetric Lewis-base catalysis are stimulating the still ongoing design of improved catalysts. [Pg.170]

The majority of catalytic enantioselective allylation reactions involve the chiral Lewis-acid-catalysed additions of allylsilanes or allylstannanes to carbonyl compounds. Monothiobinaphthol has been used by Woodward et al. as a chiral promoter in the enantioselective catalytic allylation of aryl ketones with impure Sn(allyl)4, prepared from allyl chloride, air-oxidised magnesium and SnCl4. Therefore, the allylation of arylketones in these conditions was achieved very efficiently, since the corresponding allylic alcohols were formed in... [Pg.310]

In reactions of chiral aldehydes, TiIV compounds work well as both activators and chelation control agents, a- or A-oxygcnated chiral aldehydes react with allylsilanes to afford chiral homoallylic alcohols with high selectivity (Scheme 22).85 These chiral alcohols are useful synthetic units for the synthesis of highly functionalized chiral compounds. Cyclic chiral 0,0- and A/O-acetals react with allylsilanes in the same way.86,87 Allenylsilanes have also been reported as allylation agents. [Pg.407]

In the asymmetric hydrosilylation of 1,3-cyclohexadiene 38 (Scheme 10, Table 4), catalyzed by chiral ferrocenylphosphines 5 and 40, the enantioselectivity is higher with phenyldifluorosilane than that with trichlorosilane or methyldichlorosilane (entries 1—4). The reaction of 38 with phenyldifluorosilane in the presence of a palladium catalyst coordinated with ferrocenylphosphine 40b gave allylsilane (A)-39c with 77% ee.58,59 The use of (j3-N-sulfonylaminoalkyl (phosphine 35a for the reaction of 38 with methyldichlorosilane exhibited the same level of asymmetric induction (entries 5-6).53 In this asymmetric hydrosilylation, combination of trichlorosilane and... [Pg.824]

The enantioselective addition of an allylsilane to an aldehyde catalyzed by chiral acyloxyborane (CAB) 13 is an excellent method for obtaining optically active homoallyl alcohols.Itsuno and Kumagai reported that the synthesis of a new optically active polymer with chirality on the mainchain is possible by applying this reaction to the asymmetric polymerization of bis(allylsilane) and dialdehyde (Scheme 12.11). ... [Pg.365]

The first example of a chiral Lewis base promoted allylation was given by Denmark and coworkers in 1994 [45], Stoichiometric amounts of chiral phospho-ramide R,R)-20 facilitated the enantioselective allylation (Scheme 15). There was a complete stereochemical correlation between the geometry (ElZ) of allylsilane and the diastereomeric ratio (synlanti) of the products. [Pg.357]

In the following a few examples of the asymmetric aldol reaction are given. Silyl enol ethers (0-Si) resemble very much allylsilanes (C-Si) in terms of structure and mode of action. That is why Lewis base catalyzed aldol reactions of silyl enol ethers have been extensively studied. The first example of Lewis base catalyzed asymmetric aldol reaction of trichlorosilyl enol ether with chiral phosphoramide [80-91] was reported by Denmark et al. (Scheme 24). [Pg.361]

In an approach to direct the alkylation of (l-silyl-2-propenyl)lithium into the a-position by chelating substituents on the silicon atom, chiral pyrrolidinyl-substituted allylsilane 1 was deprotonated and alkylated with iodomethane (94%)51. Regiocontrol was moderate, the a-product 2 dominating (85%). [Pg.694]

Further investigations are needed to establish, whether this approach is really useful to obtain chiral allylsilanes 2, which are synthetically quite interesting intermediates. They are available otherwise only by asymmetric cross-coupling of silyl alkyl Grignard reagents with bromoethylenes in the presence of a chiral ferrocenylphosphine-palladium catalyst54. [Pg.694]

Using catalyst 1, Blechert and co-workers were able to demonstrate the first sterically controlled CM reaction for the exclusive preparation of -olefms (Scheme 6). The best results were obtained using various substituted allylic amines, where the completely stereocontrolled installation of allylsilanes was observed. The mild conditions employed in these examples are noteworthy, as minimal racemization occurred when highly epimerizable chiral allyl amino esters were employed. [Pg.184]

Allylic amide isomerization, 117 Allylic amine isomerization ab initio calculations, 110 catalytic cycle, 104 cobalt-catalyzed, 98 double-bond migration, 104 isotope-labeling experiments, 103 kinetics, 103 mechanism, 103 model system, 110 NMR study, 104 rhodium-catalyzed, 9, 98 Allylnickel halides, 170 Allylpalladium intermediates, 193 Allylsilane protodesilylation, 305 Aluminum, chiral catalysts, 216, 234, 310 Amide dimers, NMR spectra, 282, 284 Amines ... [Pg.192]

Significantly better results in addition of non-stabilized nucleophiles have come from hydrogenolysis reactions using formate as a hydride donor as shown in Scheme 8E.46. The racemic cyclic acetate and prochiral linear carbonates were reduced in good enantioselectivities by monophosphine ligands (/ )-MOP (16) and (Zf)-MOP-phen (17), respectively [195]. The chirality of the allylsilane can be efficiently transferred to the carbinol center of the homoallylic alcohol by the subsequent Lewis acid catalyzed carbonyl addition reaction 1196], The analogous... [Pg.637]

The reactions of chiral allylsilanes with electrophiles to give diastereoselective products has recently been extensively reviewed by Masse and Panek166. An example is shown in equation 99. The reaction of the chiral allylsilanes 142 with phenylsulphenyl chloride (PSC) and chlorosulphonyl isocyanate (CSI) takes place with a diastereoselectivity which increases with the increasing steric bulk of the substituent R167. [Pg.410]

Carbamate and amide groups have been found to be stable under these coupling conditions73. In the presence of TiCLt or SnCLt, chiral a-keto amides 36 react with allyl-silane to produce, after hydrolysis, optically active tertiary alcohols 37 with extremely high optical selectivity (equation 23)74. The addition reaction appears to occur from the Si face of the carbonyl group. In a similar manner, a high degree of stereoselectivity is obtained from the reactions of A-Boc-a-amino aldehydes 38 with 2-substituted allylsilanes (equation 24)75. [Pg.1803]

Lewis acid-catalyzed stereoselective addition of crotylsilanes to chiral 74 has been studied in detail111,112. The presence of the chiral auxiliary at C2 (e.g. p-tolylsulfinyl or menthoxy carbonyl group) induces the diastereofacially selective addition of cyclopentenones with crotylsilanes. Thus, ( )-crotylsilane favors the erythro product, whilst (Z)-isomer favors the threo product. High enantioselectivity is observed in both reactions (equation 48). In a similar manner, conjugated addition of allylsilane to 75 proceeds with high efficiency (equation 49)113. Interestingly, the yield and enantiomeric excess of the product is dependent on the amount of TiCL used and the best selectivity... [Pg.1812]


See other pages where Allylsilanes chiral is mentioned: [Pg.32]    [Pg.214]    [Pg.215]    [Pg.355]    [Pg.28]    [Pg.48]    [Pg.83]    [Pg.84]    [Pg.236]    [Pg.123]    [Pg.191]    [Pg.248]    [Pg.742]    [Pg.824]    [Pg.289]    [Pg.91]    [Pg.71]    [Pg.346]    [Pg.250]    [Pg.1122]    [Pg.23]    [Pg.346]    [Pg.127]    [Pg.661]    [Pg.672]    [Pg.125]    [Pg.544]    [Pg.569]    [Pg.1236]   
See also in sourсe #XX -- [ Pg.315 , Pg.455 ]




SEARCH



Allylsilan

Allylsilane

Allylsilanes

© 2024 chempedia.info