Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Level of saturation

Figure 6.25a shows the same grand composite curve with two levels of saturated steam used as a hot utility. The steam system in Fig. 6.25a shows the low-pressure steam being desuperheated by injection of boiler feedwater after pressure reduction to maintain saturated conditions. Figure 6.256 shows again the same grand composite curve but with hot oil used as a hot utility. [Pg.186]

The speed with which taste stimulation occurs, coupled with the fact that stimulation with toxic substances does no damage to the receptors, led Beidler to suggest that taste stimulus need not enter the interior of the taste cell in order to initiate excitation. Because a taste cell has been shown to be sensitive to a number of taste qualities, and to a large number of chemical stimuli, he and his coworkers concluded that a number of different sites of adsorption must exist on the surface of the cell. Therefore, they assumed that taste response results from adsorption of chemical stimuli to the surface of the receptor at given receptor sites. This adsorption is described by a monomolecular reaction similar to that assumed by Renqvist, Lasareff, and Hahn, but with a difference. From the fact that each type of chemical-stimulus compound has a unique level of saturation of the taste receptor, it was concluded that the magnitude of the response is dependent on the initial reaction with the receptor, and not on other, subsequent receptor-reactions that are common to all types of receptor stimulation. Therefore, it was assumed that the magnitude of neural response is directly proportional to the number of sites filled, the maximum response occurring when all of the sites are filled. Beidler derived a fundamental... [Pg.210]

Absorption, Distribution, Metabolism, and Excretion. There are no data available on the absorption, distribution, metabolism, or excretion of diisopropyl methylphosphonate in humans. Limited animal data suggest that diisopropyl methylphosphonate is absorbed following oral and dermal exposure. Fat tissues do not appear to concentrate diisopropyl methylphosphonate or its metabolites to any significant extent. Nearly complete metabolism of diisopropyl methylphosphonate can be inferred based on the identification and quantification of its urinary metabolites however, at high doses the metabolism of diisopropyl methylphosphonate appears to be saturated. Animal studies have indicated that the urine is the principal excretory route for removal of diisopropyl methylphosphonate after oral and dermal administration. Because in most of the animal toxicity studies administration of diisopropyl methylphosphonate is in food, a pharmacokinetic study with the compound in food would be especially useful. It could help determine if the metabolism of diisopropyl methylphosphonate becomes saturated when given in the diet and if the levels of saturation are similar to those that result in significant adverse effects. [Pg.108]

Seong (2002) compared silylated (aldehyde) and silanated (amine and epoxy) compounds from several commercial sources to the performance of an antigen (IgG) microarray. In addition, the efficiency of phosphate-buffered saline (PBS) (pH 7.4) and carbonate (pH 9.6) printing buffers were compared. While the various slides and surface chemistries showed differences in their binding isotherms, they ultimately reached similar levels of saturation. Silylated (aldehyde) slides showed comparable loading in both buffer systems. Apparently, tethering of antibody to the surface by Schiff s base formation of the surface aldehyde and lysine residues on the protein was applicable over a broad pH. However, carbonate buffer increased binding of proteins on silanated surfaces. [Pg.67]

Insulin secretion stimulation. Oil, administered orally to young suckling rabbits, quickened and strengthened the rise of immunoreactive serum insulin ". Intestinal brush border membrane. Oil, administered orally to rats at a dose of 10% for 5 weeks, produced an increase in level of saturated fatty acids in the brush border membrane from coconut oil-fed animals. Membrane fluidity was as follows coconut oil less than commercial pellet diet less than corn oil less than fish oil. The membrane hexose content was high in the coconut-fed rats. Hexamines were elevated in coconut-treated rat brush borders. The activities of alkaline phosphatase, sucrase, and lactase were increased "". [Pg.136]

For the purposes of making polyols from these triglycerides, oils which contain a high level of unsaturation are desirable. Oils such as soy, canola, and sunflower are acceptable due to relatively low levels of saturated fatty acids, while feedstocks such as palm oil are considered unusable without further purification or refinement due to high levels of saturated fatty acids. Table 1 outlines the composition of several oils (3). [Pg.379]

Fundamental membrane research has benefited greatly from the study of monolayers. One of the most important discoveries from this sort of research is the very existence of two-dimensional phases and phase transitions. Generally, studies of the sort that can be carried out with monolayers and bilayers cannot be directly extended to living cells, but some exceptional cases have shown that the extrapolation is valid. For example, it is known from monolayer studies that the presence of unsaturated hydrocarbon chains in lipid monolayers prevents some phase transitions from occurring as the temperature is lowered. Certain mutants of Escherichia coli are unable to synthesize fatty acids and hence can be manipulated through the compounds they are provided as nutrients. Abnormal levels of saturated hydrocarbon can... [Pg.396]

Therefore, when Pco = 1/220 XP02 the hemoglobin in the blood will be 50% saturated with carbon monoxide. Since air contains 21% oxygen, approximately 0.1% carbon monoxide will give this level of saturation. Hence, carbon monoxide is potentially very poisonous at low concentrations. The rate at which the arterial blood concentration of carbon monoxide reaches an equilibrium with the alveolar concentration will depend on other factors such as exercise and the efficiency of the lungs. Other factors will also affect the course of the poisoning. [Pg.364]

Prepare a table listing the retention time for each standard FAME. Use this table to identify the fatty acids present in each triacylglycerol you analyzed. Alternatively, plot the log of the retention time against the chain length of each saturated FAME (see Figure E6.5). Unknown saturated fatty acids can be identified from experimental retention times using this plot. Unsaturated fatty acids cannot be identified from the plot of saturated FAMEs. A separate plot of log retention time vs. the chain length must be prepared for each level of saturation (saturated, monounsaturation, diunsaturation, etc.). [Pg.315]

The association rate constant is characteristic of individual antibody-antigen interactions, but with typical association rate constants, antibody concentrations of 10-100 nM (about 1-10 pg/mL) are usually sufficient to drive binding to an adequate level of saturation in 30 min at 4°C. Unless high cell concentrations (>106 cells/mL) or high levels of antigen expression (>106 antigens/cell) are involved, antibody will be m excess under these conditions. [Pg.332]

Once bearing some substituents, the decrease of polarity of the sucrose derivatives makes them soluble in less-polar solvents, such as acetone or tert-butanol, in which some lipases are able to catalyze esterifications. Unlike proteases, which necessitate most often the use of an activated acyl donor (such as vinyl or trifluoroethyl esters), lipases are active with simple esters and even the parent carboxylic acids in the presence of a water scavenger. The selectivity of the lipase-catalyzed second esterification is specific for OH-6 allowing the synthesis of mixed T,6 -diesters.123,124 For some lipases, a chain-length dependence on the regiochemistry was observed.125 Selectively substituted monoesters were thus prepared and studied for their solution and thermotropic behavior.126,127 Combinations of enzyme-mediated and purely chemical esterifications led to a series of specifically substituted sucrose fatty acid diesters with variations in the chain length, the level of saturation, and the position on the sugar backbone. This allowed the impact of structural variations on thermotropic properties to be demonstrated (compare Section III.l).128... [Pg.230]

Most oils contain low levels of saturated and unsaturated hydrocarbons. In olive oil, the unsaturated hydrocarbon squalene can constitute up to 40% of the unsaponifiable fraction (Boskou, 1996). Other hydrocarbons commonly present in olive oil are straight chain alkanes and alkenes with 13 to 35 carbon atoms, along with very low amounts of branched chain hydrocarbons. Variations are found between different olive varieties but the main hydrocarbons are those with 23, 25, 27 and 29 carbon atoms (Guinda et al., 1996). Olive oil can clearly be differentiated from other vegetable oils on the basis of hydrocarbon components, and levels of 2.6% crude rapeseed oil or crude sunflower oil can be detected by hydrocarbon analysis (Webster et al., 1999). Terpenes have been identified in the volatile fraction of crude sunflower oil (Bocci and Frega, 1996). [Pg.152]

Application of a least-squares method to the linearized plots (e.g., Scatchard and Hames) is not reasonable for analysis of drug-protein binding or other similar cases (e.g., adsorption) to obtain the parameters because the experimental errors are not parallel to the y-axis. In other words, because the original data have been transformed into the linear form, the experimental errors appear on both axes (i.e., independent and dependent variables). The errors are parallel to the y-axis at low levels of saturation and to the x-axis at high levels of saturation. The use of a double reciprocal plot to determine the binding parameters is recommended because the experimental errors are parallel to the y-axis. The best approach to this type of experimental data is to carry out nonlinear regression analysis on the original equation and untransformed data. [Pg.194]

Under normal circumstances, transferrin is one-fourth to one-third saturated with iron. The level of saturation may decrease in systemic infection or cancer and in iron deficiency anemia, the most common nutritional deficiency in the United States. In individuals with iron deficiency anemia, transferrin levels are increased. The level of saturation with iron increases in iron overload syndromes such as hereditary hemochromatosis or as a result of repeated blood transfusions, as is the case in thalassemia patients. Determinations of total plasma iron (TI) and plasma total iron binding capacity (TIBC) are routinely performed in the clinical biochemistry laboratory. The TIBC value reflects transferrin levels in plasma the amount of iron that can be bound by transferrin is equal to TIBC x 0.7. Total plasma iron levels in iron deficiency anemia become abnormal before hemoglobin levels show any change. [Pg.182]

Niacin (nicotinic acid) > 90, rapid Active Saturable system Depends on level of saturation of first pass metabolism... [Pg.231]


See other pages where Level of saturation is mentioned: [Pg.31]    [Pg.150]    [Pg.439]    [Pg.1520]    [Pg.7]    [Pg.7]    [Pg.539]    [Pg.90]    [Pg.290]    [Pg.21]    [Pg.122]    [Pg.421]    [Pg.29]    [Pg.385]    [Pg.166]    [Pg.315]    [Pg.88]    [Pg.324]    [Pg.219]    [Pg.183]    [Pg.135]    [Pg.37]    [Pg.334]    [Pg.37]    [Pg.6]    [Pg.231]    [Pg.264]    [Pg.265]    [Pg.19]    [Pg.6]    [Pg.121]    [Pg.27]    [Pg.272]    [Pg.157]    [Pg.1622]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Saturation of Level Population by Optical Pumping

© 2024 chempedia.info