Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lecithin LCAT

High-density lipoproteins (HDL) have much longer life spans in the body (5 to 6 days) than other lipoproteins. Newly formed HDL contains virtually no cholesterol ester. However, over time, cholesterol esters are accumulated through the action of lecithin cholesterol acyltransferase (LCAT), a 59-kD glycoprotein associated with HDLs. Another associated protein, cholesterol ester transfer protein, transfers some of these esters to VLDL and LDL. Alternatively, HDLs function to return cholesterol and cholesterol esters to the liver. This latter process apparently explains the correlation between high HDL levels and reduced risk of cardiovascular disease. (High LDL levels, on the other hand, are correlated with an increased risk of coronary artery and cardiovascular disease.)... [Pg.845]

Lysolecithin (lysophosphatidylcholine) may be formed by an alternative route that involves lecithin cholesterol acyltransferase (LCAT). This enzyme. [Pg.200]

FIGURE 9. Endogenous lipoprotein metabolism. In liver cells, cholesterol and triglycerides are packaged into VLDL particles and exported into blood where VLDL is converted to IDL. Intermediate-density lipoprotein can be either cleared by hepatic LDL receptors or further metabolized to LDL. LDL can be cleared by hepatic LDL receptors or can enter the arterial wall, contributing to atherosclerosis. Acetyl CoA, acetyl coenzyme A Apo, apolipoprotein C, cholesterol CE, cholesterol ester FA, fatty acid HL, hepatic lipase HMG CoA, 3-hydroxy-3-methyglutaryl coenzyme A IDL, intermediate-density lipoprotein LCAT, lecithin-cholesterol acyltransferase LDL, low-density lipoprotein LPL, lipoprotein lipase VLDL, very low-density lipoprotein. [Pg.178]

ApoC-I is expressed mainly in liver but also in lung, skin, testis, spleen, neural retina, and RPE. Its multiple functions include the activation of lecithin cholesterol acyltransferase (LCAT) and the inhibition, among others, of lipoprotein and hepatic lipases that hydrolyze triglycerides in particle cores. Notably, both LCAT and lipoprotein lipases are expressed in RPE and choroid (Li et al., 2006). Moreover ApoC-I has been shown to displace ApoE on the VLDL and LDL and thus hinder their binding and uptake via their corresponding receptors (Li et al., 2006). [Pg.319]

HDL Picks up cholesterol accumulating in blood vessels Delivers cholesterol to liver and steroidogenic tissues via scavenger receptor (SR-BI) Shuttles apoC-II and apoE in blood apoA-1 Activates lecithin cholesterol acylwansferase (LCAT) to produce cholesterol esters... [Pg.211]

LCAT, lecithin cholesterol acyltransferase CETP, cholesterol ester transfer protein SR-61, scavenger receptor-BI... [Pg.212]

Figure 11.15 The reaction catalysed by lecithin cholesterol acyltransferase (LCAT). LinoLeate is transferred from a phospholipid in the blood to cholesterol to form cholesteryl linoleate, catalysed by LCAT. The cholesterol ester forms the core of HDL, which transfers cholesterol to the liver. Discoidal HDL (i.e. HDL3) is secreted by the liver and collects cholesterol from the peripheral tissues, especially endothellial cells (see Figure 22.10). Cholesterol is then esterified with lin-oleic acid and HDL changes its structure (HDL2) to a more stable form as shown in the lower part of the figure. R is linoleate. Figure 11.15 The reaction catalysed by lecithin cholesterol acyltransferase (LCAT). LinoLeate is transferred from a phospholipid in the blood to cholesterol to form cholesteryl linoleate, catalysed by LCAT. The cholesterol ester forms the core of HDL, which transfers cholesterol to the liver. Discoidal HDL (i.e. HDL3) is secreted by the liver and collects cholesterol from the peripheral tissues, especially endothellial cells (see Figure 22.10). Cholesterol is then esterified with lin-oleic acid and HDL changes its structure (HDL2) to a more stable form as shown in the lower part of the figure. R is linoleate.
DAG diacylglycerol LCAT lecithin-cholesterol acyl transferase... [Pg.560]

The HDLs also originate in the liver. They return the excess cholesterol formed in the tissues to the liver. While it is being transported, cholesterol is acylated by lecithin cholesterol acyltransferase (LCAT). The cholesterol esters formed are no longer amphipathic and can be transported in the core of the lipoproteins. In addition, HDLs promote chylomicron and VLDL turnover by exchanging lipids and apoproteins with them (see above). [Pg.278]

Phosphatidylcholine-sterol acyltransferase— lecithin-cholesterol acyltransferase (LCAT) ... [Pg.423]

One of the most striking lipoprotein abnormalities of familial LCAT deficiency is the presence in the LDL fraction of abnormally large particles, containing variable but unusually great proportions of unesteri-fied cholesterol and lecithin (F6, G14, N5). Recently, an abnormal LDL lipoprotein, identical to cholestatic lipoprotein, LP-X (see Section 8.1) was demonstrated in plasma from patients with familial LCAT deficiency (Ml, T2). Identity of the abnormal LDL lipoprotein and LP-X was shown by electron microscopy, composition, and immunological techniques (T2). The amount of LP-X in plasma of patients with obstructive jaundice ranged from 40 to 1200 mg/100 ml (M3) whereas plasma from patients with familial LCAT deficiency contained 49 to 152 mg/100 ml (T2). [Pg.139]

Rare genetic disorders, including Tangier disease and LCAT (lecithin cholesterol acyltransferase) deficiency, are associated with extremely low levels of HDL. Familial hypoalphalipoproteinemia is a more common disorder with levels of HDL cholesterol usually below 35 mg/dL in men and 45 mg/dL in women. These patients tend to have premature atherosclerosis, and the low HDL may be the only identified risk factor. Management should include special attention to avoidance or treatment of other risk factors. Niacin increases HDL in many of these patients. Reductase inhibitors and fibric acid derivatives exert lesser effects. [Pg.784]

Dobiasova M, Frohlich JJ (1998) Assays of lecithin cholesterol acyltransferase (LCAT) Methods Mol Biol 110 217-230... [Pg.545]

Funke H, Eckardstein A von, Pritchard PH, Albers JJ, Kastelein JJ, Droste C, Assmann G (1991) A molecular defect causing fish eye disease an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity. Proc Natl Acad Sci U S A 88 4855-4859... [Pg.545]

The fourth major lipoprotein type, high-density lipoprotein (HDL), originates in the liver and small intestine as small, protein-rich particles that contain relatively little cholesterol and no cholesteryl esters (Fig. 21-40). HDLs contain apoA-I, apoC-I, apoC-II, and other apolipoproteins (Table 21-3), as well as the enzyme lecithin-cholesterol acyl transferase (LCAT), which catalyzes the formation of cholesteryl esters from lecithin (phosphatidylcholine) and cholesterol (Fig. 21-41). LCAT on the surface of nascent (newly forming) HDL particles converts the cholesterol and phosphatidylcholine of chylomicron and VLDL remnants to cholesteryl esters, which begin to form a core, transforming the disk-shaped nascent HDL to a mature, spherical HDL particle. This cholesterol-rich lipoprotein then returns to the liver, where the cholesterol is unloaded some of this cholesterol is converted to bile salts. [Pg.823]

FIGURE 21-41 Reaction catalyzed by lecithin-cholesterol acyl transferase (LCAT). This enzyme is present on the surface of HDL and is stimulated by the HDL component apoA-I. Cholesteryl esters accumulate within nascent HDLs, converting them to mature HDLs. [Pg.823]

Esterification of cholesterol When cholesterol is taken up by HDL, it is immediately esterified by the plasma enzyme phos-phatidylcholine cholesterol acyltransferase (PCAT, also known as LCAT, in which "L" stands for lecithin). This enzyme is synthesized by the liver. PCAT binds to nascent HDLs, and is activated by apo A-l. PCAT transfers the fatty acid from carbon 2 of phosphatidyl-... [Pg.232]

Figure 21-1 Movement of triacylglycerols from liver and intestine to body cells and lipid carriers of blood. VLDL very low density lipoprotein which contains triacylglycerols, phospholipids, cholesterol, and apolipoproteins B, and C. IDL intermediate density lipoproteins found in human plasma. LDL low density lipoproteins which have lost most of their triacylglycerols. ApoB-100, etc., are apolipoproteins listed in Table 21-2. LCAT, lecithin cholesterol acyltransferase CETP, cholesteryl ester transfer protein (see Chapter 22). Figure 21-1 Movement of triacylglycerols from liver and intestine to body cells and lipid carriers of blood. VLDL very low density lipoprotein which contains triacylglycerols, phospholipids, cholesterol, and apolipoproteins B, and C. IDL intermediate density lipoproteins found in human plasma. LDL low density lipoproteins which have lost most of their triacylglycerols. ApoB-100, etc., are apolipoproteins listed in Table 21-2. LCAT, lecithin cholesterol acyltransferase CETP, cholesteryl ester transfer protein (see Chapter 22).
Liver and some intestinal cells export cholesterol into the bloodstream, together with triacylglycerols and phospholipids in the form of VLDL particles, for uptake by other tissues (see Fig. 21-1). Cholesteryl esters are formed in the ER by lecithin cholesterol acyltransferase (LCAT), an enzyme that transfers the central acyl group from phosphatidylcholine to the hydroxyl group of cholesterol.191 1913 This enzyme is also secreted by the liver and acts on free cholesterol in lipoproteins.192 Tissue acyltransferases also form cholesteryl esters from fatty acyl-CoAs.192a... [Pg.1247]

Carrol, R.M. and Rudel, L.L. 1981. Dietary fat and cholesterol effects on lipoprotein cholesterol ester formation via lecithin-cholestrol acyltrans-ferase (LCAT) in vervet monkey. J. Lipid Res. 22 359-363. [Pg.464]

Reaction catalyzed by lecithin cholesterol acyltransferase (LCAT). The resulting cholesteryl ester is transferred to VLDL and LDL particles by a lipid transfer protein. [Pg.473]

The apoproteins of HDL are secreted by the liver and intestine. Much of the lipid comes from the surface monolayers of chylomicrons and VLDL during lipolysis. HDL also acquire cholesterol from peripheral tissues in a pathway that protects the cholesterol homeostasis of cells. In this process, free cholesterol is transported from the cell membrane by a transporter protein, ABCA1, acquired by a small particle termed prebeta-1 HDL, and then esterified by lecithin cholesterol acyltransferase (LCAT), leading to the formation of larger HDL species. The cholesteryl esters are transferred to VLDL, IDL, LDL, and chylomicron remnants with the aid of cholesteryl ester transfer protein (CETP). Much of the cholesteryl ester thus transferred is ultimately delivered to the liver by endocytosis of the acceptor lipoproteins. HDL can also deliver cholesteryl esters directly to the liver via a docking receptor (scavenger receptor, SR-BI) that does not endocytose the lipoproteins. [Pg.789]

Once associated with HDL, FC is converted to CE by the action of lecithin-cholesterol acyltransferase (LCAT), which resides on the surface of HDL. This conversion creates a concentration gradient for the further uptake of FC. The newly formed CE enters the core of the HDL because of its highly hydrophobic nature. This process transforms nascent disk-shaped HDL into mature spherical HDL (HDL3). [Pg.117]

Hyperlipidemia (mainly hypercholesterolemia) is a regular part of nephrotic syndrome (K13, W6). Serum levels of cholesterol are often markedly elevated, usually above 10 mmol/L. However, in severely malnourished patients, normal or even decreased serum cholesterol level can be found. Serum levels of triacylglyc-erols fluctuate, from normal values to markedly elevated values (mainly in patients with proteinuria higher than 10 g/24 hr). There is a variable increase in plasma concentrations of very low density lipoproteins (VLDL, they correlate negatively with serum albumin level), intermediate-density lipoproteins (IDL), andLDL however, plasma concentrations of HDL are usually normal (J3). Levels of lipoprotein(a) [Lp(a)j are also increased (W4). Remission of nephrotic syndrome or decrease of proteinuria may result in the decrease of plasma concentrations of Lp(a) (G2). Concentration of free fatty acids in serum is commonly decreased because they are normally bound to albumin and albumin is lost into the urine. The activity of lecithin cholesterol acyltransferase (LCAT) is usually decreased. [Pg.197]


See other pages where Lecithin LCAT is mentioned: [Pg.173]    [Pg.173]    [Pg.697]    [Pg.223]    [Pg.177]    [Pg.178]    [Pg.193]    [Pg.559]    [Pg.269]    [Pg.178]    [Pg.197]    [Pg.215]    [Pg.235]    [Pg.279]    [Pg.111]    [Pg.134]    [Pg.134]    [Pg.139]    [Pg.776]    [Pg.779]    [Pg.469]    [Pg.562]    [Pg.785]    [Pg.159]    [Pg.341]   
See also in sourсe #XX -- [ Pg.414 ]




SEARCH



LCAT

Lecithin

Lecithin cholesterol acyl transferase (LCAT

Lecithin-cholesterol acyltransferase LCAT)

© 2024 chempedia.info