Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead isomers

Barrall and Ballinger conclude that the electron affinity detector furnishes a simple and direct means for the analysis of alkyl lead isomers normally found in petroleum. [Pg.383]

Later experiments do not allow a clear choice between these alternatives. The high proportion of o-isomer formed when nitration is effected with acetyl nitrate in acetic anhydride is confirmed by the results of expts. 10-14 (table 5.5). The use of fuming, rather than pure nitric acid, in the preparation of the reagent, which may lead to nitration... [Pg.94]

Only relatively few examples of interesting target molecules containing rings are known. These include caryophyllene (E.J. Corey, 1963 A, 1964) and cubane (J.C. Barborak, 1966). The photochemical [2 + 2]-cycloaddition applied by Corey yielded mainly the /ranr-fused isomer, but isomerization with base leads via enolate to formation of the more stable civ-fused ring system. [Pg.78]

Electron-deficient alkenes add stereospecifically to 4-hydroxy-THISs with formation of endo-cycloadducts. Only with methylvinyl-ketone considerable amounts of the exo isomer are produced (Scheme 8) (16). The adducts (6) may extrude hydrogen sulfide on heating with methoxide producing 2-pyridones. The base is unnecessary with fumaronitrile adducts. The alternative elimination of isocyanate Or sulfur may be controlled using 7 as the dipolarenOphile. The cycloaddition produces two products, 8a (R = H, R = COOMe) and 8b (R = COOMe, R =H) (Scheme 9) (17). Pyrolysis of 8b leads to extrusion of furan and isocyanate to give a thiophene. The alternative S-elimi-nation can be effected by oxidation of the adduct and subsequent pyrolysis. [Pg.5]

CycJohexyl free radicals, generated by photolysis of t-butyl peroxide in excess cyclohexane, also possess nucleophilic character (410). Their attack on thiazole in neutral medium leads to an increase of the 2-isomer and a decrease of 5-isomer relative to the phenylation reaction, in agreement with the positive charge of the 2-position and the negative charge of the 5-position (6). [Pg.111]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

Ma.nufa.cture. Butenediol is manufactured by partial hydrogenation of butynediol. Although suitable conditions can lead to either cis or trans isomers (111), the commercial product contains almost exclusively iVj -2-butene-l,4-diol Trans isomer, available at one time by hydrolysis of l,4-dichloro-2-butene, is unsuitable for the major uses of butenediol involving Diels-Alder reactions. The Hquid-phase heat of hydrogenation of butynediol to butenediol is 156 kj/mol (37.28 kcal/mol) (112). [Pg.107]

Although 4-hydroxybenzaldehyde can be made by the saligenin route, it has been made historically by the Reimer-Tiemann process, which also produces sahcylaldehyde (64). Treatment of phenol with chloroform and aqueous sodium hydroxide results in the formation of benzal chlorides, which are rapidly hydrolyzed by the alkaline medium into aldehydes. Acidification of the phenoxides results in the formation of the final products, sahcylaldehyde and 4-hydroxybenzaldehyde. The ratio of ortho and para isomers is flexible and can be controlled within certain limits. The overall reaction scheme is shown in Figure 1. Product separation is accomphshed by distillation, but this process leads to environmental problems because of the quantities of sodium chloride produced. [Pg.506]

The stringency of the conditions employed in the unmodified cobalt 0x0 process leads to formation of heavy trimer esters and acetals (2). Although largely supplanted by low pressure ligand-modified rhodium-catalyzed processes, the unmodified cobalt 0x0 process is stiU employed in some instances for propylene to give a low, eg, - 3.3-3.5 1 isomer ratio product mix, and for low reactivity mixed and/or branched-olefin feedstocks, eg, propylene trimers from the polygas reaction, to produce isodecanol plasticizer alcohol. [Pg.466]

Table 3 fists cycloaliphatic diamines. Specific registry numbers are assigned to the optical isomers of /n t-l,2-cyclohexanediamine the cis isomer is achiral at ambient temperatures because of rapid interconversion of ring conformers. Commercial products ate most often marketed as geometric isomer mixtures, though large differences in symmetry may lead to such wide variations in physical properties that separations by classical unit operations are practicable, as in Du Font s fractional crystallisation of /n t-l,4-cyclohexanediamine (mp 72°C) from the low melting (5°C) cis—trans mixture. [Pg.206]

Amin omethyl-3,5,5-trimethyl cyclohexyl amine (21), commonly called isophoronediamine (IPD) (51), is made by hydrocyanation of (17) (52), (53) followed by transformation of the ketone (19) to an imine (20) by dehydrative condensation of ammonia (54), then concomitant hydrogenation of the imine and nitrile functions at 15—16 MPa (- 2200 psi) system pressure and 120 °C using methanol diluent in addition to YL NH. Integrated imine formation and nitrile reduction by reductive amination of the ketone leads to alcohol by-product. There are two geometric isomers of IPD the major product is ds-(22) [71954-30-5] and the minor, tram-(25) [71954-29-5] (55). [Pg.210]

By-Products. Almost all commercial manufacture of pyridine compounds involves the concomitant manufacture of various side products. Liquid- and vapor-phase synthesis of pyridines from ammonia and aldehydes or ketones produces pyridine or an alkylated pyridine as a primary product, as well as isomeric aLkylpyridines and higher substituted aLkylpyridines, along with their isomers. Furthermore, self-condensation of aldehydes and ketones can produce substituted ben2enes. Condensation of ammonia with the aldehydes can produce certain alkyl or unsaturated nitrile side products. Lasdy, self-condensation of the aldehydes and ketones, perhaps with reduction, can lead to alkanes and alkenes. [Pg.333]

Recognition of the thio group s key role in biochemistry has led to studies of l,4-ben2oquinone with glutathione, a tripeptide 7-Glu-Cys-Gly (GSH). The cross-oxidation of the initial addition product by excess quinone leads, under physiological conditions, to all three isomeric products (46), ie, the 2,3-and 2,6-isomers as well as the 2,5-disubstituted l,4-ben2oquinone shown. [Pg.410]

Nitration. It is difficult to control nitration of thiophene, which yields 2-nitrothiophene [609-40-9]. The strongly electropbilic nitronium ion leads to significant yields (12—15%) of 3-isomer. A preferred procedure is the slow addition of thiophene to an anhydrous mixture of nitric acid, acetic acid, and acetic anhydride. [Pg.19]

Manufacture of 2-acetylthiophenes involves direct reaction of thiophene or alkylthiophene with acetic anhydride or acetyl chloride. Preferred systems use acetic anhydride and have involved iodine or orthophosphoric acid as catalysts. The former catalyst leads to simpler workup, but has the disadvantage of leading to a higher level of 3-isomer in the product. Processes claiming very low levels of 3-isomer operate with catalysts that are proprietary, though levels of less than 0.5% are not easily attained. [Pg.21]


See other pages where Lead isomers is mentioned: [Pg.898]    [Pg.898]    [Pg.2156]    [Pg.306]    [Pg.368]    [Pg.79]    [Pg.592]    [Pg.628]    [Pg.158]    [Pg.291]    [Pg.731]    [Pg.102]    [Pg.96]    [Pg.99]    [Pg.119]    [Pg.87]    [Pg.252]    [Pg.251]    [Pg.18]    [Pg.477]    [Pg.366]    [Pg.71]    [Pg.256]    [Pg.70]    [Pg.394]    [Pg.68]    [Pg.248]    [Pg.512]    [Pg.157]    [Pg.292]    [Pg.82]    [Pg.30]    [Pg.128]   


SEARCH



Lead isomers factors

© 2024 chempedia.info