Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Layered systems, analytical methods

Multilayered structures play an important role in the production of, e.g., biomaterials, catalysts, corrosion protectors, detectors/diodes, gas and humidity sensors, integral circuits, optical parts, solar cells, and wear protection materials. One of the most sophisticated developments is a head-up-display (HUD) for cars, consisting of a polycarbonate substrate and a series of the layers Cr (25 nm), A1 (150 nm), SiO, (55 nm), TiO, (31 nm), and SiO, (8 nm). Such systems should be characterized by non-destructive analytical methods. [Pg.411]

Bergstrom et al. [63] used HPLC for determination of penicillamine in body fluids. Proteins were precipitated from plasma and hemolyzed blood with trichloroacetic acid and metaphosphoric acid, respectively, and, after centrifugation, the supernatant solution was injected into the HPLC system via a 20-pL loop valve. Urine samples were directly injected after dilution with 0.4 M citric acid. Two columns (5 cm x 0.41 cm and 30 cm x 0.41 cm) packed with Zipax SCX (30 pm) were used as the guard and analytical columns, respectively. The mobile phase (2.5 mL/min) was deoxygenated 0.03 M citric acid-0.01 M Na2HP04 buffer, and use was made of an electrochemical detector equipped with a three-electrode thin-layer cell. The method was selective and sensitive for mercapto-compounds. Recoveries of penicillamine averaged 101% from plasma and 107% from urine, with coefficients of variation equal to 3.68 and 4.25%, respectively. The limits of detection for penicillamine were 0.5 pm and 3 pm in plasma and in urine, respectively. This method is selective and sensitive for sulfhydryl compounds. [Pg.146]

Thin-Layer Chromatography. Thin-layer chromatography was used for many of the compounds which are of interest for either qualitative or quantative analysis. These techniques were used primarily as screening methods to supplement other analytical methods. For some brominated compounds such as TRIS, the detection system reported by Hahn (9) was applicable. This method is based upon the reaction of fluorescein with elemental bromine released through peroxide oxidation. An evaluation in our laboratory of this detection system indicated that semi-quantitative results... [Pg.221]

The most frequently applied analytical methods used for characterizing bulk and layered systems (wafers and layers for microelectronics see the example in the schematic on the right-hand side) are summarized in Figure 9.4. Besides mass spectrometric techniques there are a multitude of alternative powerful analytical techniques for characterizing such multi-layered systems. The analytical methods used for determining trace and ultratrace elements in, for example, high purity materials for microelectronic applications include AAS (atomic absorption spectrometry), XRF (X-ray fluorescence analysis), ICP-OES (optical emission spectroscopy with inductively coupled plasma), NAA (neutron activation analysis) and others. For the characterization of layered systems or for the determination of surface contamination, XPS (X-ray photon electron spectroscopy), SEM-EDX (secondary electron microscopy combined with energy disperse X-ray analysis) and... [Pg.259]

Figure 9.4 Analytical methods for bulk and layered systems and applications. (). S. Becker and H.J. Dietze, Int. j. Mass Spectrom., 197, I (2000). Reproduced by permission of Elsevier.)... Figure 9.4 Analytical methods for bulk and layered systems and applications. (). S. Becker and H.J. Dietze, Int. j. Mass Spectrom., 197, I (2000). Reproduced by permission of Elsevier.)...
Trace impurities in noble metal nanoclusters, used for the fabrication of highly oriented arrays on crystalline bacterial surface layers on a substrate for future nanoelectronic applications, can influence the material properties.25 Reliable and sensitive analytical methods are required for fast multi-element determination of trace contaminants in small amounts of high purity platinum or palladium nanoclusters, because the physical, electrical and chemical properties of nanoelectronic arrays (thin layered systems or bulk) can be influenced by impurities due to contamination during device production25 The results of impurities in platinum or palladium nanoclusters measured directly by LA-ICP-MS are compared in Figure 9.5. As a quantification procedure, the isotope dilution technique in solution based calibration was developed as discussed in Chapter 6. [Pg.265]

The surface of a solid sample interacts with its environment and can be changed, for instance by oxidation or due to corrosion, but surface changes can occur due to ion implantation, deposition of thick or thin films or epitaxially grown layers.91 There has been a tremendous growth in the application of surface analytical methods in the last decades. Powerful surface analysis procedures are required for the characterization of surface changes, of contamination of sample surfaces, characterization of layers and layered systems, grain boundaries, interfaces and diffusion processes, but also for process control and optimization of several film preparation procedures. [Pg.277]

The schlieren system of optics is an analytical method that is particularly well suited to following the location of a chemical boundary with time. It is routinely employed in ultracentrifuges and also in electrophoresis experiments, as we see in Chapter 12. Schlieren optics produces an effect that depends on the way the refractive index varies with position, that is, the refractive index gradient rather than on the refractive index itself. Therefore, the schlieren effect is the same at all locations along the axis of sedimentation, except at any place where the refractive index is changing. In such a region, it will produce an optical effect that is proportional to the refractive index gradient. The boundary between two layers is thus per-... [Pg.76]

The analysis of several pure metals and binary alloys yields generally at least a duplex and in some cases a multilayer structure of the passive film, as depicted schematically in Fig. 19. These systems have been examined with surface analytical methods, mainly XPS, but also ISS in some cases. The systematic variation of the electrochemical preparation parameters gives insight to the related changes of layer composition and layer development, and support a reliable interpretation of the results. Usually the lower valent species are found in the inner part and the higher valent species in the outer part of the passive layer. It is a consequence of the applied potential which of the species is dominating. Higher valent species are formed at sufficiently positive potentials only and may suppress the contribution of the lower... [Pg.302]

In the last chapter, Strehblow provides a review of experimental methodology and theoretical concepts of passivation and passivity of metals. The topics of emphasis include growth and composition of passive layers, their structure and electronic properties, and their breakdown. Current accomplishments are discussed in detail for a selected number of key metal and alloy systems. Summarized in some detail are the most important analytical methods for elucidation of chemical composition, electronic properties and structure of passive layers. It is shown for many systems that the application of multiple combinations of electrochemical and spectroscopic methods provide many insights and confidence in the interpretation of the passive behavior of metals. [Pg.380]

TLC is an ideal sample preparation method prior to further analysis for substance identification. Using suitable TLC systems, especially those involving optimal precoated layers, it is possible not only to separate mixtures of unknown substances but also to use various spectroscopic evaluation methods directly on the layers. By this combination of two different analytical methods, it is often possible to perform an imequivo-cal identification of a substance even when the samples are extremely small. These spectroscopic evaluation methods include the following ... [Pg.122]

A second important focus of our work is the development of suitable analytical methods for the solid state and in solution. The physical characterization of metallo-supramolecular systems has mainly relied on crystal structure determination. Studies have also been performed on surface layers 40-42). The classical analytical methods (like FAB mass spectrometry) or most polymer methods (like light scattering, vapor pressure osmometry or membrane osmometry) can not be used. In solution, ESI mass spectrometry (43-45) and NMR (27,46) have been succesfully applied. We have explored whether MALDI-TOF mass spectrometry in the solid state (Schubert, U. S. Lehn, J.-M. Weidl, C. H. Spickermann, J. Goix, L. Rader, J. Mullen, K., unpublished data.) and sedimentation equilibrium analysis in the analytical ultracentrifuge for solutions may be employed. Grid-like cobalt coordination arrays ([2 X 2] Co(n)-Grid) were used as model systems in the analytical ultracentrifuge (47). [Pg.250]


See other pages where Layered systems, analytical methods is mentioned: [Pg.348]    [Pg.348]    [Pg.245]    [Pg.199]    [Pg.17]    [Pg.256]    [Pg.285]    [Pg.1202]    [Pg.153]    [Pg.543]    [Pg.210]    [Pg.154]    [Pg.147]    [Pg.276]    [Pg.370]    [Pg.186]    [Pg.118]    [Pg.478]    [Pg.652]    [Pg.256]    [Pg.285]    [Pg.2919]    [Pg.212]    [Pg.1321]    [Pg.1706]    [Pg.115]    [Pg.121]    [Pg.544]    [Pg.21]    [Pg.13]    [Pg.949]    [Pg.265]    [Pg.298]   


SEARCH



Analytical systems

Layered systems

Layering method

Layering system

System method

© 2024 chempedia.info