Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactic acid property

C. Holten, A. Muller, and D. Rehbinder, Lactic acid properties and chemistry of lactic acid and derivatives Verlag Chemie, Weinheim, Germany, 1971. [Pg.217]

Castillo Martinez FA, Balciunas EM, Salgado JM, Dominguez Gonzalez JM, Convert A, Oliveira RPDS (2013) Lactic acid properties, applications and production a review. Trends Food Sci Technol 30(l) 70-83... [Pg.118]

Definition Ethoxylated monoethanolamine (DGA) of lactic acid Properties Nonionic... [Pg.2312]

C. H. Holten, A. Mueller, D. Rehbinder, Lactic Acid Properties and Chemistry of Lactic Acid and Derivatives, Verlag Chemie, Copenhagen, 1971. [Pg.29]

Lehermeier, H.J., Dorgan, J.R., 2000. Poly(lactic acid) properties and prospect of an environmentally benign plastic melt rheology of linear and branched blends. In Fourteenth symposium on thermophysical properties. [Pg.244]

Definition Calcium/sodium salt derived from stearic and lactic acids Properties Ivory wh. powd. characteristic odor sol. in ethanol insol. in water disp. in hot water... [Pg.2010]

An example of a chiral compound is lactic acid. Two different forms of lactic acid that are mirror images of each other can be defined (Figure 2-69). These two different molecules are called enantiomers. They can be separated, isolated, and characterized experimentally. They are different chemical entities, and some of their properties arc different (c.g., their optical rotation),... [Pg.77]

Physical properties. All are colourless crystalline solids except formic acid, acetic acid (m.p. 18 when glacial) and lactic acid (m.p. 18°, usually a syrup). Formic acid (b.p. loo ") and acetic acid (b.p. 118 ) are the only members which are readily volatile lactic acid can be distilled only under reduced pressure. Formic and acetic acids have characteristic pungent odours cinnamic acid has a faint, pleasant and characteristic odour. [Pg.347]

Specific rotation is a physical property of a substance just as melting point boil mg point density and solubility are For example the lactic acid obtained from milk is exclusively a single enantiomer We cite its specific rotation m the form [a]o =+3 8° The temperature m degrees Celsius and the wavelength of light at which the measure ment was made are indicated as superscripts and subscripts respectively... [Pg.288]

Physical Properties. Pure, anhydrous lactic acid is a white, crystalline soHd with a low melting poiat. However, it is difficult to prepare the pure anhydrous form of lactic acid generally, it is available as a dilute or concentrated aqueous solution. The properties of lactic acid and its derivatives have been reviewed (6). A few important physical and thermodynamic properties from this reference are summarized ia Table 1. [Pg.511]

Table 1. Physical and Thermodynamic Properties of Lactic Acid... Table 1. Physical and Thermodynamic Properties of Lactic Acid...
Many of the physical properties are not affected by the optical composition, with the important exception of the melting poiat of the crystalline acid, which is estimated to be 52.7—52.8°C for either optically pure isomer, whereas the reported melting poiat of the racemic mixture ranges from 17 to 33°C (6). The boiling poiat of anhydrous lactic acid has been reported by several authors it was primarily obtained duriag fractionation of lactic acid from its self-esterification product, the dimer lactoyUactic acid [26811-96-1]. The difference between the boiling poiats of racemic and optically active isomers of lactic acid is probably very small (6). The uv spectra of lactic acid and dilactide [95-96-5] which is the cycHc anhydride from two lactic acid molecules, as expected show no chromophores at wavelengths above 250 nm, and lactic acid and dilactide have extinction coefficients of 28 and 111 at 215 nm and 225 nm, respectively (9,10). The iafrared spectra of lactic acid and its derivatives have been extensively studied and a summary is available (6). [Pg.512]

Chemical Properties. Its two functional groups permit a wide variety of chemical reactions for lactic acid. The primary classes of these reactions are oxidation, reduction, condensation, and substitution at the alcohol group. [Pg.512]

DUactide (5) exists as three stereoisomers, depending on the configurations of the lactic acid monomer used. The enantiomeric forms whereia the methyl groups are cis are formed from two identical lactic acid molecules, D- or L-, whereas the dilactide formed from a racemic mixture of lactic acid is the opticaUy iaactive meso form, with methyl groups trans. The physical properties of the enantiomeric dilactide differ from those of the meso form (6), as do the properties of the polymers and copolymers produced from the respective dilactide (23,24). [Pg.512]

Polylactide is the generaUy accepted term for highly polymeric poly(lactic acid)s. Such polymers are usuaUy produced by polymerization of dilactide the polymerization of lactic acid as such does not produce high molecular weight polymers. The polymers produced from the enantiomeric lactides are highly crystalline, whereas those from the meso lactide are generaUy amorphous. UsuaUy dilactide from L-lactic acid is preferred as a polymerization feedstock because of the avaUabUity of L-lactic acid by fermentation and for the desirable properties of the polymers for various appUcations (1,25). [Pg.512]

Other blends such as polyhydroxyalkanoates (PHA) with cellulose acetate (208), PHA with polycaprolactone (209), poly(lactic acid) with poly(ethylene glycol) (210), chitosan and cellulose (211), poly(lactic acid) with inorganic fillers (212), and PHA and aUphatic polyesters with inorganics (213) are receiving attention. The different blending compositions seem to be limited only by the number of polymers available and the compatibiUty of the components. The latter blends, with all natural or biodegradable components, appear to afford the best approach for future research as property balance and biodegradabihty is attempted. Starch and additives have been evaluated ia detail from the perspective of stmcture and compatibiUty with starch (214). [Pg.482]

A Acylsarcosinates. Sodium A/-lautoylsarcosinate [7631-98-3] is a good soap-like surfactant. Table 4 gives trade names and properties. The amido group in the hydrophobe chain lessens the interaction with hardness ions. A/-Acylosarcosinates have been used in dentifrices (qv) where they ate claimed to inactivate enzymes that convert glucose to lactic acid in the mouth (57). They ate prepared from a fatty acid chloride and satcosine ... [Pg.238]

The bonding properties of (Ti02) have been used for size-reinforcing of glass fibers so that they adhere to asphalt or to a PTEE—polysulfide mixture to impart enhanced flex endurance (434—436). Poly(vinyl alcohol) (PVA) solutions mixed with sucrose can be cross-linked with the lactic acid chelate and used generally for glass-fiber sizing (437). [Pg.161]

Property Rennet Lactic acid Sulfuric acid Cheese... [Pg.441]

Lactic acid and levulinic acid are two key intermediates prepared from carbohydrates [7]. Lipinsky [7] compared the properties of the lactide copolymers [130] obtained from lactic acid with those of polystyrene and polyvinyl chloride (see Scheme 4 and Table 5) and showed that the lactide polymer can effectively replace the synthetics if the cost of production of lactic acid is made viable. Poly(lactic acid) and poly(l-lactide) have been shown to be good candidates for biodegradeable biomaterials. Tsuji [131] and Kaspercejk [132] have recently reported studies concerning their microstructure and morphology. [Pg.419]

The most common, although not the only, cause of chirality in an organic molecule is the presence of a carbon atom bonded to four different groups—for example, the central carbon atom in lactic acid. Such carbons are now referred to as chirality centers, although other terms such as stereocenter asymmetric center, and stereogenic center have also been used formerly. Note that chirality is a property of the entire molecule, whereas a chirality center is the cause of chirality. [Pg.292]

Except for their effect on plane-polarized light, two enantiomers of a chiral compound have identical physical properties. For example, the two isomers of lactic acid shown below have the same melting point, 52°C, and density, 1.25 g/mL. [Pg.601]

See also PBT degradation structure and properties of, 44-46 synthesis of, 106, 191 Polycaprolactam (PCA), 530, 541 Poly(e-caprolactone) (CAPA, PCL), 28, 42, 86. See also PCL degradation OH-terminated, 98-99 Polycaprolactones, 213 Poly(carbo[dimethyl]silane)s, 450, 451 Polycarbonate glycols, 207 Polycarbonate-polysulfone block copolymer, 360 Polycarbonates, 213 chemical structure of, 5 Polycarbosilanes, 450-456 Poly(chlorocarbosilanes), 454 Polycondensations, 57, 100 Poly(l,4-cyclohexylenedimethylene terephthalate) (PCT), 25 Polydimethyl siloxanes, 4 Poly(dioxanone) (PDO), 27 Poly (4,4 -dipheny lpheny lpho sphine oxide) (PAPO), 347 Polydispersity, 57 Polydispersity index, 444 Poly(D-lactic acid) (PDLA), 41 Poly(DL-lactic acid) (PDLLA), 42 Polyester amides, 18 Polyester-based networks, 58-60 Polyester carbonates, 18 Polyester-ether block copolymers, 20 Polyester-ethers, 26... [Pg.595]

Broz, M.E., VanderHart, D.L. and Washburn, N.R. 2003. Structure and mechanical properties of poly(d,l-lactic acid)/poly(e-caprolactone) blends. Biomaterials 24 4181-4190. [Pg.37]

Xu, Y. and Qu, J. 2009. Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science 112 3185 - 3191. [Pg.40]

Converts physiologically into lactic acid Soluble in water and alcohol Keratolytic action Desmoplastic property... [Pg.31]


See other pages where Lactic acid property is mentioned: [Pg.441]    [Pg.421]    [Pg.895]    [Pg.20]    [Pg.219]    [Pg.441]    [Pg.421]    [Pg.895]    [Pg.20]    [Pg.219]    [Pg.515]    [Pg.73]    [Pg.103]    [Pg.309]    [Pg.115]    [Pg.27]    [Pg.41]    [Pg.173]    [Pg.9]    [Pg.28]    [Pg.228]    [Pg.82]    [Pg.198]    [Pg.222]   
See also in sourсe #XX -- [ Pg.4 , Pg.19 ]




SEARCH



Chemical Properties of Poly(lactic Acid)

Depolymerization Properties of Poly(Lactic Acid)

Lactic acid physical properties

Mechanical Properties of Poly(lactic Acid)

Physical Properties of Lactic Acid

Rheological Properties of Poly(lactic Acid)

Thermal Properties of Poly(lactic Acid)

© 2024 chempedia.info