Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction kinetic surface

The development and control of microstracture are critical in the processing of ceramics and cements. The chemical engineer s knowledge of reaction kinetics, surface phenomena, and transport phenomena could contribute effectively to the development of new materials. [Pg.179]

Fig. 4.7. Reactive reboiler. Intersections of potential singular point surface with reaction kinetic surfaces at four different Damkohler numbers Da, MTBE synthesis at 8.11 x 105 Pa. Fig. 4.7. Reactive reboiler. Intersections of potential singular point surface with reaction kinetic surfaces at four different Damkohler numbers Da, MTBE synthesis at 8.11 x 105 Pa.
The maximum surface carbon content is usually set by the gas composition via the equiUbtium constant. If the gas reaction kinetics deposit carbon at a rate which carmot be equaled by the diffusion of carbon into the steel, then the surface value may be less than the possible equiUbtium value. [Pg.214]

Volumetric heat generation increases with temperature as a single or multiple S-shaped curves, whereas surface heat removal increases linearly. The shapes of these heat-generation curves and the slopes of the heat-removal lines depend on reaction kinetics, activation energies, reactant concentrations, flow rates, and the initial temperatures of reactants and coolants (70). The intersections of the heat-generation curves and heat-removal lines represent possible steady-state operations called stationary states (Fig. 15). Multiple stationary states are possible. Control is introduced to estabHsh the desired steady-state operation, produce products at targeted rates, and provide safe start-up and shutdown. Control methods can affect overall performance by their way of adjusting temperature and concentration variations and upsets, and by the closeness to which critical variables are operated near their limits. [Pg.519]

CO oxidation catalysis is understood in depth because potential surface contaminants such as carbon or sulfur are burned off under reaction conditions and because the rate of CO oxidation is almost independent of pressure over a wide range. Thus ultrahigh vacuum surface science experiments could be done in conjunction with measurements of reaction kinetics (71). The results show that at very low surface coverages, both reactants are adsorbed randomly on the surface CO is adsorbed intact and O2 is dissociated and adsorbed atomically. When the coverage by CO is more than 1/3 of a monolayer, chemisorption of oxygen is blocked. When CO is adsorbed at somewhat less than a monolayer, oxygen is adsorbed, and the two are present in separate domains. The reaction that forms CO2 on the surface then takes place at the domain boundaries. [Pg.176]

Reaction kinetics at phase houndaiies. Rates of adsorption and desorption in porous adsorbents are generally controlled by mass transfer within the pore network rather than by the kinetics of sorption at the surface. Exceptions are the cases of chemisorption and affinity-adsorption systems used for biological separations, where the kinetics of bond formation can be exceedingly slow. [Pg.1510]

The reaction kinetics approximation is mechanistically correct for systems where the reaction step at pore surfaces or other fluid-solid interfaces is controlling. This may occur in the case of chemisorption on porous catalysts and in affinity adsorbents that involve veiy slow binding steps. In these cases, the mass-transfer parameter k is replaced by a second-order reaction rate constant k. The driving force is written for a constant separation fac tor isotherm (column 4 in Table 16-12). When diffusion steps control the process, it is still possible to describe the system hy its apparent second-order kinetic behavior, since it usually provides a good approximation to a more complex exact form for single transition systems (see Fixed Bed Transitions ). [Pg.1514]

Figure 16-27 compares the various constant pattern solutions for R = 0.5. The curves are of a similar shape. The solution for reaction kinetics is perfectly symmetrical. The cui ves for the axial dispersion fluid-phase concentration profile and the linear driving force approximation are identical except that the latter occurs one transfer unit further down the bed. The cui ve for external mass transfer is exactly that for the linear driving force approximation turned upside down [i.e., rotated 180° about cf= nf = 0.5, N — Ti) = 0]. The hnear driving force approximation provides a good approximation for both pore diffusion and surface diffusion. [Pg.1527]

FIG. 16-27 Constant pattern solutions for R = 0.5. Ordinant is cfor nfexcept for axial dispersion for which individual curves are labeled a, axial dispersion h, external mass transfer c, pore diffusion (spherical particles) d, surface diffusion (spherical particles) e, linear driving force approximation f, reaction kinetics. [from LeVan in Rodrigues et al. (eds.), Adsorption Science and Technology, Kluwer Academic Publishers, Dor drecht, The Nether lands, 1989 r eprinted with permission.]... [Pg.1528]

The overall reaction kinetics conesponding to these stages of surface adsorption followed by reaction can be represented by die equation... [Pg.133]

Volume 109 Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis. [Pg.267]

Theoretical Approaches to the Kinetics of Adsorption, Desorption, and Reactions at Surfaces... [Pg.439]

If the PBR is less than unity, the oxide will be non-protective and oxidation will follow a linear rate law, governed by surface reaction kinetics. However, if the PBR is greater than unity, then a protective oxide scale may form and oxidation will follow a reaction rate law governed by the speed of transport of metal or environmental species through the scale. Then the degree of conversion of metal to oxide will be dependent upon the time for which the reaction is allowed to proceed. For a diffusion-controlled process, integration of Pick s First Law of Diffusion with respect to time yields the classic Tammann relationship commonly referred to as the Parabolic Rate Law ... [Pg.965]

Oxidation kinetics over platinum proceeds at a negative first order at high concentrations of CO, and reverts to a first-order dependency at very low concentrations. As the CO concentration falls towards the center of a porous catalyst, the rate of reaction increases in a reciprocal fashion, so that the effectiveness factor may be greater than one. This effectiveness factor has been discussed by Roberts and Satterfield (106), and in a paper to be published by Wei and Becker. A reversal of the conventional wisdom is sometimes warranted. When the reaction kinetics has a negative order, and when the catalyst poisons are deposited in a thin layer near the surface, the optimum distribution of active catalytic material is away from the surface to form an egg yolk catalyst. [Pg.100]

Copper oxide, oxidation of CO over, 86 Coupled heterogeneous catalytic reactions, kinetics of, 1-49, see also Kinetics coupling through catalytic surface, 9-13 experimental studies, 22-49 apparatus and procedure, 25, 26 catalysts, 26-28... [Pg.416]

Tethering may be a reversible or an irreversible process. Irreversible grafting is typically accomplished by chemical bonding. The number of grafted chains is controlled by the number of grafting sites and their functionality, and then ultimately by the extent of the chemical reaction. The reaction kinetics may reflect the potential barrier confronting reactive chains which try to penetrate the tethered layer. Reversible grafting is accomplished via the self-assembly of polymeric surfactants and end-functionalized polymers [59]. In this case, the surface density and all other characteristic dimensions of the structure are controlled by thermodynamic equilibrium, albeit with possible kinetic effects. In this instance, the equilibrium condition involves the penalties due to the deformation of tethered chains. [Pg.46]

Reaction Kinetics and Mechanism on Metal Single Crystal Electrode Surfaces AdiiC, R. 21... [Pg.621]

The rate is near first order in methane and zero order in oxygen for oxygen to methane ratios higher than 1. Also, the reaction kinetics remain unaffected upon polarization conditions. The kinetic data indicate weak bonding of methane and strong bonding of oxygen on the catalyst surface. [Pg.383]

As shown in Fig. 9.27 there is a break in the slope of the Tafel plot at Erhe I-OS V with a change in the transfer coefficient from 0.27 to 0.1. As shown below this change is consistent with a change in the surface coverages of adsorbed species as also manifest in the reaction kinetics. [Pg.463]

The rate-limiting step is generally determined by either the surface reaction kinetics or by mass transport. [Pg.51]

In the case of control by surface reaction kinetics, the rate is dependent on the amount of reactant gases available. As an example, one can visualize a CVD system where the temperature and the pressure are low. This means that the reaction occurs slowly because of the low temperature and there is a surplus of reactants at the surface since, because of the low pressure, the boundary layer is thin, the diffusion coefficients are large, and the reactants reach the deposition surface with ease as shown in Fig. 2.8a. [Pg.51]


See other pages where Reaction kinetic surface is mentioned: [Pg.66]    [Pg.601]    [Pg.91]    [Pg.92]    [Pg.286]    [Pg.4753]    [Pg.66]    [Pg.601]    [Pg.91]    [Pg.92]    [Pg.286]    [Pg.4753]    [Pg.899]    [Pg.953]    [Pg.1056]    [Pg.2938]    [Pg.328]    [Pg.537]    [Pg.320]    [Pg.277]    [Pg.344]    [Pg.504]    [Pg.505]    [Pg.2440]    [Pg.252]    [Pg.944]    [Pg.1298]    [Pg.160]    [Pg.944]    [Pg.149]    [Pg.50]    [Pg.51]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Kinetics surface reactions

Kinetics surfaces

© 2024 chempedia.info