Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Data analysis, enzyme kinetics surface reactions

The kinetic analysis of an enzyme mechanism often begins by analysis in the steady state therefore, we first consider the conclusions that can be derived by steady-state analysis and examine how this information is used to design experiments to explore the enzyme reaction kinetics in the transient phase. It has often been stated that steady-state kinetic analysis cannot prove a reaction pathway, it can only eliminate alternate models from consideration (5). This is true because the data obtained in the steady state provide only indirect information to define the pathway. Because the steady-state parameters, kcat and K, are complex functions of all of the reactions occurring at the enzyme surface, individual reaction steps are buried within these terms and cannot be resolved. These limitations are overcome by examination of the reaction pathway by transient-state kinetic methods, wherein the enzyme is examined as a stoichiometric reactant, allowing individual steps in a pathway to be established by direct measurement. This is not to say that steady-state kinetic analysis is without merit rather, steady-state and transient-state kinetic studies complement one another and analysis in the steady state should be a prelude to the proper design and interpretation of experiments using transient-state kinetic methods. Two excellent chapters on steady-state methods have appeared in this series (6, 7) and they are highly recommended. [Pg.3]

Instruments of this type may also be used quite effectively to evaluate kinetics of time-dependent changes in foods, be they enzymatic or reactive changes of other types. The computerized data-acquisition capabilities of these instruments allow precise measurement of absorbance or fluorescence changes, often over very brief time periods ( milliseconds). This is particularly useful for analysis of fluorescence decay rates, and in measurement of enzymatic activity in situ. A number of enzyme substrates is available commercially which, although non-fluorescent initially, release fluorescent reaction products after hydrolysis by appropriate enzymes. This kinetic approach is a relatively underused capability of computerized microspectrophotometers, but one which has considerable capability for comparing activities in individual cells or cellular components. Fluorescein diacetate, for example, is a non-fluorescent compound which releases intensely fluorescent fluorescein on hydrolysis. This product is readily quantified in individual cells which have high levels of esterase [50]. Changes in surface or internal color of foods may also be evaluated over time by these methods. [Pg.255]


See other pages where Data analysis, enzyme kinetics surface reactions is mentioned: [Pg.520]    [Pg.598]    [Pg.111]    [Pg.933]    [Pg.201]    [Pg.101]    [Pg.14]   
See also in sourсe #XX -- [ Pg.190 , Pg.191 ]




SEARCH



Data analysis, enzyme kinetics

Enzyme kinetic

Enzyme kinetic analysis

Enzyme kinetics

Enzyme kinetics reactions

Enzyme surface

Enzymic analysis

Kinetic analysis

Kinetic analysis enzyme reactions

Kinetic data reactions

Kinetics surface reactions

Kinetics surfaces

Reaction data

Reactions, surface enzymic

Surface analysis

© 2024 chempedia.info