Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic resolutions Subject

Stereoinversion Stereoinversion can be achieved either using a chemoenzymatic approach or a purely biocatalytic method. As an example of the former case, deracemization of secondary alcohols via enzymatic hydrolysis of their acetates may be mentioned. Thus, after the first step, kinetic resolution of a racemate, the enantiomeric alcohol resulting from hydrolysis of the fast reacting enantiomer of the substrate is chemically transformed into an activated ester, for example, by mesylation. The mixture of both esters is then subjected to basic hydrolysis. Each hydrolysis proceeds with different stereochemistry - the acetate is hydrolyzed with retention of configuration due to the attack of the hydroxy anion on the carbonyl carbon, and the mesylate - with inversion as a result of the attack of the hydroxy anion on the stereogenic carbon atom. As a result, a single enantiomer of the secondary alcohol is obtained (Scheme 5.12) [8, 50a]. [Pg.105]

Two types of sulfoximinocarboxylates (analogous to sulfinylcarboxylates 16), namely 5 -aryl-5 -methoxycarbonylmethyl-A(-methyl sulfoximine 36 and -methyl-5 -phenyl-A(-ethoxycarbonyl sulfoximine 37, were subjected to hydrolysis in the presence of PLE in a phosphate buffer. As a result of a kinetic resolution, both the enantiomerically enriched recovered substrates and the products of hydrolysis and subsequent decarboxylation 38 and 39, respectively, were obtained with moderate to good ees (Equations 20 and 21). Interestingly, in each case the enantiomers of the substrates, having opposite spatial arrangement of the analogous substituents, were preferentially hydrolysed. This was explained in terms of the Jones PLE active site model. ... [Pg.171]

An efficient dynamic kinetic resolution is observed when an a-bromo- or a-acetylamino-/3-keto phosphate is subjected to the hydrogenation with an Ru-BINAP catalyst under suitable conditions. With RuC12[(A)-BINAP](DMF) (0.18 mM) as the catalyst, a racemic a-bromo-/3-keto phosphonate is hydrogenated at 25 °G under... [Pg.49]

Kinetic resolution is achieved when racemic enynes are subjected to Zhang s Alder-ene conditions (Scheme 19).66 A single diastereomer of trans-94 (>99% ee) is accessible through the exposure of racemic enyne 93 to the Rh(i) catalyst in the presence of optically pure BINAP ligand. [Pg.581]

Scheme 5. Chiral medium-ring heterocycles that have been synthesized by catalytic RCM and resolved by the Zr-catalyzed kinetic resolution are subject to diastereoselective alkylations that afford synthetically useful materials in the optically pure form... Scheme 5. Chiral medium-ring heterocycles that have been synthesized by catalytic RCM and resolved by the Zr-catalyzed kinetic resolution are subject to diastereoselective alkylations that afford synthetically useful materials in the optically pure form...
A variety of methods are also available when the compound under investigation can be converted with a chiral reagent to diastereomeric products, which have readily detectable differences in physical properties. If a derivatizing agent is employed, it must be ensured that the reaction with the subject molecule is quantitative and that the derivatization reaction is carried out to completion. This will ensure that unintentional kinetic resolution does not occur before the analysis. The derivatizing agent itself must be enantiomerically pure, and epi-merization should not occur during the entire process of analysis. [Pg.18]

To avoid the inherent limitations of a kinetic resolution process, the reaction was extended to desymmetrization of prochiral meso epoxides. A number of cyclic di-methylidene epoxides were synthesized and subjected to treatment with Et2Zn in the presence of Cu(OTf)2 and ligands 42 or 43. As in the case mentioned above, ligand 42 was superior in terms of selectivity. Cydohexane derivative 46 gave the ring-opened product with a 97% ee and in a 90% isolated yield, with a y/a ratio of 98 2 (Scheme 8.28). The other substrates investigated produced sigmficantly lower ees of between 66% and 85%. [Pg.284]

The kinetic resolution was systematically studied by using diastereomerically pure en-ynes and an enantiomerically pure rhodium(I) catalyst (Scheme 8.9). Each product was obtained in high yield ( 100% for the reacted 51-i-unreacted 50) and high enantiomeric purity. Furthermore, these results were validated by subjecting each enantiomer... [Pg.168]

There are basically two approaches to the synthesis of enantiomerically pure alcohols (i) kinetic resolution of the racemic alcohol using a hydrolase (lipase, esterase or protease) or (ii) reduction mediated by a ketoreductase (KRED). Both of these processes can be performed as a cascade process. The first approach can be performed as a dynamic kinetic resolution (DKR) by conducting an enzymatic transesterification in the presence of a redox metal [e.g. a Ru(ll) complex] to catalyze in situ racemization of the unreacted alcohol isomer [11] (Scheme 6.1). We shall not discuss this type of process in any detail here since it forms the subject of Chapter 1. [Pg.112]

One of the first fluorescence-based ee assays uses umbelliferone (14) as the built-in fluorophore and works for several different types of enzymatic reactions 70,86). In an initial investigation, the system was used to monitor the hydrolytic kinetic resolution of chiral acetates (e.g., rac-11) (Fig. 8). It is based on a sequence of two coupled enzymatic steps that converts a pair of enantiomeric alcohols formed by the asymmetric hydrolysis under study (e.g., R - and (5)-12) into a fluorescent product (e.g., 14). In the first step, (R)- and (5)-ll are subjected separately to hydrolysis in reactions catalyzed by a mutant enzyme (lipase or esterase). The goal of the assay is to measure the enantioselectivity of this kinetic resolution. The relative amount of R)- and ( S)-12 produced after a given reaction time is a measure of the enantioselectivity and can be ascertained rapidly, but not directly. [Pg.18]

In a different approach, fluorescence-based DNA microarrays are utilized (88). In a model study, chiral amino acids were used. Mixtures of a racemic amino acid are first subjected to acylation at the amino function with formation of A-Boc protected derivatives. The samples are then covalently attached to amine-functionalized glass slides in a spatially arrayed manner (Fig. 10). In a second step, the uncoupled surface amino functions are acylated exhaustively. The third step involves complete deprotection to afford the free amino function of the amino acid. Finally, in a fourth step, two pseudo-Qn nX. om.Qx c fluorescent probes are attached to the free amino groups on the surface of the array. An appreciable degree of kinetic resolution in the process of amide coupling is a requirement for the success of the ee assay (Horeau s principle). In the present case, the ee values are accessible by measuring the ratio of the relevant fluorescent intensities. About 8000 ee determinations are possible per day, precision amounting to +10% of the actual value ((S(S). Although it was not explicitly demonstrated that this ee assay can be used to evaluate enzymes (e.g., proteases), this should in fact be possible. So far this approach has not been extended to other types of substrates. [Pg.19]

In a more detailed study, the same esterase P. fluorescens) was again subjected to mutagenesis using the same mutator strain, but also by saturation mutagenesis at selected positions 133a). In addition to 3-phenylbutyric acid ethyl ester (27), 3-bromo-2-methyl-propionic acid methyl ester rac-31) was chosen for the hydrolytic kinetic resolution, with the WT PFE showing an E factor of 12 in favor of the (5)-32. [Pg.44]

Classic resolntion has been performed by formation of diastereomeiic salts which could be separated. In a series of synthetic steps and when resolution is one step, it is of utmost importance that the correct chirality is introduced at an early stage. When a racemate is subject to enzyme catalysis, one enantiomer reacts faster than the other and this leads to kinetic resolution (Figure 2.2c). Results of hydrolysis using lipase B from Candida antarctica (CALB) and a range of C-3 secondary butanoates are shown in Table 2.1. [Pg.29]

The synthesis of jS-hydoxy-a-amino acids is important since these compounds are incorporated into the backbone of a wide range of antibiotics and cyclopeptides such as vancomycins. These highly functional compounds are also subject to dynamic kinetic resolution (DKR) processes, as the stereocenter already present in the substrate epimerizes under the reaction conditions and hence total conversions into single enantiomers are possible. These transformations can be iy -selective ° for N-protected derivatives as shown in Figure 1.27 when using a mthenium-BlNAP catalyzed system and anfi-selective when the jS-keto-a-amino acid hydrochloride salts are reduced by the iridium-MeOBlPHEP catalyst as shown in Figure 1.28. One drawback is that both these reductions use 100 atm hydrogen pressure. [Pg.15]

When they subjected the allenylzinc reagent to the Hoffmann test for configurational stability,29 Poisson, Chemla and Normant found that at — 50 °C, racemization does not occur at a significant rate (equation 36)30,31. Accordingly, when the racemic allenylzinc reagent was added slowly to the /V-benzy limine of (R)-mandehc aldehyde at — 50 °C, a 1 1 mixture of the anti,syn and anti,anti adducts was isolated in 65% yield. However, when the addition process was reversed, a 3 1 mixture favoring the matched anti,anti adduct was formed in 53% yield, suggestive of a partial kinetic resolution. [Pg.446]

When the allylic alcohol is the desired product of the kinetic resolution process, the accompanying epoxy alcohol also may be converted to the desired allylic alcohol by the two-step sequence shown in Scheme 6A. 1. The epoxy alcohol, after separation from the allyl alcohol, is mesylated and then subjected to reaction with sodium telluride, which effects the transformation of epoxy mesylate to the allylic alcohol with inversion at the asymmetric carbinol center [ 115e]. Preliminary results suggest that the rearrangement follows this pathway only when the epoxy alcohol is unsubstituted at the 3-position. [Pg.260]

Most work on this subject is based on the use of alcohols as reagents in the presence of enantiomerically pure nucleophilic catalysts [1, 2]. This section is subdivided into four parts on the basis of classes of anhydride substrate and types of reaction performed (Scheme 13.1) - desymmetrization of prochiral cyclic anhydrides (Section 13.1.1) kinetic resolution of chiral, racemic anhydrides (Section 13.1.2) parallel kinetic resolution of chiral, racemic anhydrides (Section 13.1.3) and dynamic kinetic resolution of racemic anhydrides (Section 13.1.4). [Pg.347]

Racemic chiral secondary allylic alcohols can be subjected to a kinetic resolution by means of the Sharpless epoxidation (Figure 3.39). The reagent mixture reacts with both enantiomers of the allylic alcohol—they may be considered as a-substituted crotyl alcohols—with very different rates. The unreactive enantiomer is therefore isolated with enantiomer excesses close to ee = 100% in almost 50% yield at approximately 50% conversion. The other enantiomer is the reactive enantiomer. Its epoxidation proceeds much faster (i.e., almost quantitatively) at 50% conversion. The epoxide obtained can also be isolated and, due to its enantiomeric excess, used synthetically. [Pg.138]

The chiral lithium amide 18 has also been used for catalytic kinetic resolution of epoxides117. Epoxide 104 was subjected for kinetic resolutions under the conditions shown in Scheme 75, which resulted in roughly enantiopure epoxide and allylic alcohol. [Pg.457]

This nitrilase dynamic kinetic resolution (DKR) methodology depends on the availability of highly enantioselective biocatalysts that generate a minimum amount of amide. This latter issue may seem trivial and has long been disregarded somewhat, but reports of modest amounts of amide co-products date back to the early days of nitrilase enzymology. Only recently has the subject come under more intense scrutiny [3-5] and has a relationship with the stereochemistry of the nitrile been demonstrated [3, 5]. Hence, we set out to investigate the enantiomer and chemical selectivity of nitrilases in the hydrolysis of a representative set of cyanohydrins. [Pg.261]


See other pages where Kinetic resolutions Subject is mentioned: [Pg.525]    [Pg.284]    [Pg.175]    [Pg.191]    [Pg.1228]    [Pg.1228]    [Pg.532]    [Pg.38]    [Pg.43]    [Pg.877]    [Pg.189]    [Pg.567]    [Pg.329]    [Pg.1115]    [Pg.43]    [Pg.140]    [Pg.103]    [Pg.134]    [Pg.192]    [Pg.196]    [Pg.640]    [Pg.314]    [Pg.332]    [Pg.317]    [Pg.180]   
See also in sourсe #XX -- [ Pg.427 ]




SEARCH



Resolution Subject

Subject kinetics

© 2024 chempedia.info