Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject kinetics

The treatment may be made more detailed by supposing that the rate-determining step is actually from species O in the OHP (at potential relative to the solution) to species R similarly located. The effect is to make fi dependent on the value of 2 and hence on any changes in the electrical double layer. This type of analysis has permitted some detailed interpretations to be made of kinetic schemes for electrode reactions and also connects that subject to the general one of this chapter. [Pg.214]

In classical mechanics, it is certainly possible for a system subject to dissipative forces such as friction to come to rest. For example, a marble rolling in a parabola lined with sandpaper will eventually lose its kinetic energy and come to rest at the bottom. Rather remarkably, making a measurement of E that coincides with... [Pg.20]

The current frontiers for the subject of non-equilibrium thennodynamics are rich and active. Two areas dommate interest non-linear effects and molecular bioenergetics. The linearization step used in the near equilibrium regime is inappropriate far from equilibrium. Progress with a microscopic kinetic theory [38] for non-linear fluctuation phenomena has been made. Carefiil experiments [39] confinn this theory. Non-equilibrium long range correlations play an important role in some of the light scattering effects in fluids in far from equilibrium states [38, 39]. [Pg.713]

The fiindamental problem of understanding phase separation kinetics is then posed as finding the nature of late-time solutions of detemiinistic equations such as (A3.3.57) subject to random initial conditions. [Pg.739]

Scott S K 1994 Oscillations, Waves and Chaos in Chemical Kinetics (Oxford Oxford University Press) A short, final-year undergraduate level introduction to the subject. [Pg.1118]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

Chloroanisole and p-nitrophenol, the nitrations of which are susceptible to positive catalysis by nitrous acid, but from which the products are not prone to the oxidation which leads to autocatalysis, were the subjects of a more detailed investigation. With high concentrations of nitric acid and low concentrations of nitrous acid in acetic acid, jp-chloroanisole underwent nitration according to a zeroth-order rate law. The rate was repressed by the addition of a small concentration of nitrous acid according to the usual law rate = AQ(n-a[HN02]atoioh) -The nitration of p-nitrophenol under comparable conditions did not accord to a simple kinetic law, but nitrous acid was shown to anticatalyse the reaction. [Pg.58]

The mechanisms by which nucleophilic substitution takes place have been the subject of much study Extensive research by Sir Christopher Ingold and Edward D Hughes and their associates at University College London during the 1930s emphasized kinetic and stereochemical measurements to probe the mechanisms of these reactions... [Pg.330]

Homogeneous GopolymeriZation. Nearly all acryhc fibers are made from acrylonitrile copolymers containing one or more additional monomers that modify the properties of the fiber. Thus copolymerization kinetics is a key technical area in the acryhc fiber industry. When carried out in a homogeneous solution, the copolymerization of acrylonitrile foUows the normal kinetic rate laws of copolymerization. Comprehensive treatments of this general subject have been pubhshed (35—39). The more specific subject of acrylonitrile copolymerization has been reviewed (40). The general subject of the reactivity of polymer radicals has been treated in depth (41). [Pg.278]

First-order kinetics (ie, n = 1) is frequently assumed and seems adequate to describe the kinetics of most flotation processes. However, highly hydrophobic particles float faster and very fine particles or coarse ones outside the optimal flotation size range (see Fig. 1) take longer to coUect in the froth layer. ExceUent reviews of the subject are available in the Hterature (27). [Pg.49]

The analytical mechanisms for predicting the corresponding pollutant formation associated with fossil-fuel-fired furnaces lag the thermal performance prediction capabiUty by a fair margin. The most firmly estabUshed mechanism at this time is the prediction of thermal NO formation (24). The chemical kinetics of pollutant formation is, in fact, a subject of research. [Pg.147]

AH components of the reaction mixture, whatever their source, are subject to the same kind of radical attacks as the starting substrate(s). Any free-radical oxidation is inevitably a cooxidation of substrate(s) and products. The yields of final products are deterrnined by two factors (/) how much is produced in the reaction sequence, and (2) how much product survives the reaction environment. By kinetic correlations and radiotracer techniques, it is... [Pg.335]

Kinetics are slow and many hours are requited for a 95% conversion of the reactants. In the case of the subject compound, there is evidence that the reaction is autocatalytic but only when approximately 30% conversion to the product has occurred (19). Reaction kinetics are heavily dependent on the species of halogen ia the alkyl haHde and decrease ia the order I >Br >C1. Tetrabutylphosphonium chloride exhibits a high solubiHty ia a variety of solvents, for example, >80% ia water, >70% ia 2-propanol, and >50% ia toluene at 25°C. Its analogues show similar properties. One of the latest appHcations for this phosphonium salt is the manufacture of readily dyeable polyester yams (20,21). [Pg.319]

The mechanism of anionic polymerization of cyclosiloxanes has been the subject of several studies (96,97). The first kinetic analysis in this area was carried out in the early 1950s (98). In the general scheme of this process, the propagation/depropagation step involves the nucleophilic attack of the silanolate anion on the sUicon, which results in the cleavage of the siloxane bond and formation of the new silanolate active center (eq. 17). [Pg.46]

The distribution of current (local rate of reaction) on an electrode surface is important in many appHcations. When surface overpotentials can also be neglected, the resulting current distribution is called primary. Primary current distributions depend on geometry only and are often highly nonuniform. If electrode kinetics is also considered, Laplace s equation stiU appHes but is subject to different boundary conditions. The resulting current distribution is called a secondary current distribution. Here, for linear kinetics the current distribution is characterized by the Wagner number, Wa, a dimensionless ratio of kinetic to ohmic resistance. [Pg.66]


See other pages where Subject kinetics is mentioned: [Pg.126]    [Pg.126]    [Pg.21]    [Pg.606]    [Pg.664]    [Pg.665]    [Pg.716]    [Pg.1053]    [Pg.2052]    [Pg.2990]    [Pg.2]    [Pg.3]    [Pg.640]    [Pg.196]    [Pg.373]    [Pg.727]    [Pg.35]    [Pg.285]    [Pg.339]    [Pg.334]    [Pg.376]    [Pg.513]    [Pg.209]    [Pg.525]    [Pg.211]    [Pg.525]    [Pg.47]    [Pg.86]    [Pg.516]    [Pg.242]    [Pg.247]    [Pg.230]    [Pg.344]    [Pg.6]    [Pg.88]    [Pg.247]    [Pg.287]   
See also in sourсe #XX -- [ Pg.383 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.4 ]

See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Cumulative Subject kinetics

Kinetic Monte Carlo simulation Subject

Kinetic Subject

Kinetic control Subject

Kinetic modeling Subject

Kinetic resolutions Subject

Kinetic theory Subject

Subject kinetic applications

Subject kinetic study with

Subject randomization kinetics

The different subjects of adsorption kinetics and relaxations at

© 2024 chempedia.info