Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic processes disordered kinetics

In both cases the late stages of kinetics show power law domain growth, the nature of which does not depend on the mitial state it depends on the nature of the fluctuating variable(s) which is (are) driving the phase separation process. Such a fluctuating variable is called the order parameter for a binary mixture, tlie order parameter o(r,0 is tlie relative concentration of one of the two species and its fluctuation around the mean value is 5e(/,t) = c(r,t) - c. In the disordered phase, the system s concentration is homogeneous and the order... [Pg.732]

Radiation Damage. It has been known for many years that bombardment of a crystal with energetic (keV to MeV) heavy ions produces regions of lattice disorder. An implanted ion entering a soHd with an initial kinetic energy of 100 keV comes to rest in the time scale of about 10 due to both electronic and nuclear coUisions. As an ion slows down and comes to rest in a crystal, it makes a number of coUisions with the lattice atoms. In these coUisions, sufficient energy may be transferred from the ion to displace an atom from its lattice site. Lattice atoms which are displaced by an incident ion are caUed primary knock-on atoms (PKA). A PKA can in turn displace other atoms, secondary knock-ons, etc. This process creates a cascade of atomic coUisions and is coUectively referred to as the coUision, or displacement, cascade. The disorder can be directiy observed by techniques sensitive to lattice stmcture, such as electron-transmission microscopy, MeV-particle channeling, and electron diffraction. [Pg.394]

In photoluminescence one measures physical and chemical properties of materials by using photons to induce excited electronic states in the material system and analyzing the optical emission as these states relax. Typically, light is directed onto the sample for excitation, and the emitted luminescence is collected by a lens and passed through an optical spectrometer onto a photodetector. The spectral distribution and time dependence of the emission are related to electronic transition probabilities within the sample, and can be used to provide qualitative and, sometimes, quantitative information about chemical composition, structure (bonding, disorder, interfaces, quantum wells), impurities, kinetic processes, and energy transfer. [Pg.29]

Among the dynamical properties the ones most frequently studied are the lateral diffusion coefficient for water motion parallel to the interface, re-orientational motion near the interface, and the residence time of water molecules near the interface. Occasionally the single particle dynamics is further analyzed on the basis of the spectral densities of motion. Benjamin studied the dynamics of ion transfer across liquid/liquid interfaces and calculated the parameters of a kinetic model for these processes [10]. Reaction rate constants for electron transfer reactions were also derived for electron transfer reactions [11-19]. More recently, systematic studies were performed concerning water and ion transport through cylindrical pores [20-24] and water mobility in disordered polymers [25,26]. [Pg.350]

The measured growth rates are illustrated by the circles in Fig. 7. The interface velocity is plotted versus the interface temperature T. The value of T is always greater than Tq because of the release of the latent heat at the interface. Dimensionless units for T and the velocity are used here. The maximum velocity corresponds to 80m /s for argon. The most surprising aspect is the rapid crystallization at low temperatures. Most materials exhibit sharply reduced rates at low temperatures, as expected for an activated growth process. That is, the kinetics can be represented as the product of an Arrhenius factor F(T) and a term that accounts for the net production of crystalline material as a result of the atoms ordering and disordering at the interface,... [Pg.226]

A second-generation manufacturing process involving a highly enantio- and diastereo-selective lipase-catalysed kinetic resolution step has recently been reported for the production of pregabalin, a lipophilic y-aminobutyric acid analogue that was developed for the treatment of several central nervous system disorders (Scheme 1.32). ° ... [Pg.36]

Nucleation and Growth (Round 1). Phase transformations, such as the solidification of a solid from a liquid phase, or the transformation of one solid crystal form to another (remember allotropy ), are important for many industrial processes. We have investigated the thermodynamics that lead to phase stability and the establishment of equilibrium between phases in Chapter 2, but we now turn our attention toward determining what factors influence the rate at which transformations occur. In this section, we will simply look at the phase transformation kinetics from an overall rate standpoint. In Section 3.2.1, we will look at the fundamental principles involved in creating ordered, solid particles from a disordered, solid phase, termed crystallization or devitrification. [Pg.221]

In the structure of the apo-form of HIV PR, the flaps from both monomers are related by crystallographic two-fold symmetry and can be considered as being in an open conformation. In the structures of related proteases from Rous Sarcoma Virus and HIV-2, the flaps are either crystallographically disordered or in a partly closed conformation [18]. This suggests that, in solution, in the absence of ligands, the flaps are rather flexible and that the stable conformation of the flaps observed in the crystal structure of the apo-enzyme of HIV PR could be considered to result from kinetic trapping during the crystallization process. [Pg.4]

Chemical solid state processes are dependent upon the mobility of the individual atomic structure elements. In a solid which is in thermal equilibrium, this mobility is normally attained by the exchange of atoms (ions) with vacant lattice sites (i.e., vacancies). Vacancies are point defects which exist in well defined concentrations in thermal equilibrium, as do other kinds of point defects such as interstitial atoms. We refer to them as irregular structure elements. Kinetic parameters such as rate constants and transport coefficients are thus directly related to the number and kind of irregular structure elements (point defects) or, in more general terms, to atomic disorder. A quantitative kinetic theory therefore requires a quantitative understanding of the behavior of point defects as a function of the (local) thermodynamic parameters of the system (such as T, P, and composition, i.e., the fraction of chemical components). This understanding is provided by statistical thermodynamics and has been cast in a useful form for application to solid state chemical kinetics as the so-called point defect thermodynamics. [Pg.5]

Quite recently a careful kinetic study was performed by Thiel et at. (146) with the system 0/Rh( 111) by following the variation with time of the intensities of LEED "extra spots at a given coverage, yielding an activation energy of 13.5 kcal/mol. Interestingly, this process was observed to follow second-order kinetics with respect to the disordered Oad concentration which presumably has important consequences on the elucidation of the physical origin of the adatom interactions. [Pg.34]

Hashimoto, T. (1985). Time resolved small-angle X-ray scattering studies on kinetics and molecular dynamics of order-disorder transition of block polymers. In Physical optics of dynamic phenomena and processes in macromolecular systems, (ed. B. Sedlacek), p. 106. Walter de Gruyter, Berlin. [Pg.125]


See other pages where Kinetic processes disordered kinetics is mentioned: [Pg.731]    [Pg.731]    [Pg.218]    [Pg.540]    [Pg.228]    [Pg.315]    [Pg.89]    [Pg.305]    [Pg.97]    [Pg.455]    [Pg.89]    [Pg.129]    [Pg.322]    [Pg.74]    [Pg.498]    [Pg.592]    [Pg.135]    [Pg.38]    [Pg.112]    [Pg.348]    [Pg.404]    [Pg.43]    [Pg.121]    [Pg.114]    [Pg.620]    [Pg.522]    [Pg.119]    [Pg.127]    [Pg.696]    [Pg.540]    [Pg.52]    [Pg.62]    [Pg.180]    [Pg.369]    [Pg.90]    [Pg.90]    [Pg.298]    [Pg.365]    [Pg.28]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Disordered kinetics

Process, kinetics

© 2024 chempedia.info