Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic models, simplified experimental methods

By lifting the simplifying restrictions, the kinetic observations can be examined in more detail over much wider concentration ranges of the reactants than those relevant to pseudo-first-order conditions. It should be added that sometimes a composite kinetic trace is more revealing with respect to the mechanism than the conventional concentration and pH dependencies of the pseudo-first-order rate constants. Simultaneous evaluation of the kinetic curves obtained with different experimental methods, and recorded under different conditions, is based on fitting the proposed kinetic models directly to the primary data. This method yields more accurate estimates for the rate constants than conventional procedures. Such an approach has been used sporadically in previous studies, but it is expected to be applied more widely and gain significance in the near future. [Pg.456]

Thus, through the body of the mentioned experimental evidence obtained via different methods that characterize the composition and structure of macromolecules one arrives at a simple conclusion concerning the kinetic model of the binary copolymerization of styrene with methyl methacrylate (I) and with acrylonitrile (II). The former of these systems is obviously described by the terminal model, and the latter one by the penultimate model. However, the latter system characteristics in those cases when high accuracy of the results is not required, may be calculated within the framework of the Mayo-Lewis model. Such a simplified approach was found to be quite acceptable to solve many practical problems. One should note that the trivial terminal model is able to describe a vast majority (at least, 90% according to Harwood [303]) of copolymerization systems which have been already studied. [Pg.74]

The deductive method is also based on the experimental kinetic data and the available information on the reactivity of reaction species, but proceeds from the maximum possible large scheme of the reaction. Further the procedure on simplification reduction) of the reaction scheme follows, containing an excessive number of inessential reaction steps. Such a procedure implies the application of special mathematical methods, the performance of new experiments, and the comparison of descriptive capability for various options of the simplified reaction models. Only after that a conclusion is made about the correctness of the reaction kinetic model (see Figure 3.2). [Pg.36]

Narrow channels of meaningful communication about densification (and the closely related process of deformation) appear to exist between those with scientific interests on the one hand and those concerned with practical engineering objectives on the other. Unfortunately, scientists usually find it necessary to simplify their kinetic models and to establish rather restrictive boundary conditions in order to make them mathematically tractable. Many of the terms employed in such models convey well-defined conceptual quantities, but are not amenable to direct experimental measurement. Consequently, it is not surprising that such models, though valid scientifically, are not always readily adaptable to practical densification problems. The practicing engineer is more likely to rely on personal judgment developed by cut-and-try methods with real materials than he is to accept predictions based on an obviously oversimplified model which is predicated upon an unrealistically idealized material or process. [Pg.392]

Metal ions play an important role as catalysts in many autoxidation reactions and have been considered instrumental in regulating natural as well as industrial processes. In these reactive systems, in particular when the reactions occur under environmental or in vivo biochemical conditions, the metal ions are involved in complicated interactions with the substrate(s) and dioxygen, and the properties of the actual matrix as well as the transport processes also have a pronounced impact on the overall reactions. In most cases, handling and analyzing such a complexity is beyond the capacity of currently available experimental, computational and theoretical methods, and researchers in this field are obliged to use simplified sub-systems to mimic the complex phenomena. When the simplified conditions are properly chosen, these studies provide surprisingly accurate predictions for the real systems. In this paper we review the results obtained in kinetic and mechanistic studies on the model systems, but we do not discuss their broad biological or environmental implications. [Pg.396]

Generally, many experimental results can be described by applying pseudo-first-order or pseudo-second-order kinetics successfully. Sometimes, however, using confined kinetic data to elucidate exactly the reaction mechanism is indeed difficult. Hence, several simplified reaction mechanisms are usually employed to describe the kinetic behaviors of the reaction systems successfully. The technique of topochemistry is an effective method for achieving an approximate and quite precise interpretation of the kinetic data. Sirovski et al. [209] discussed the applicability of the models developed for the topochemical reactions in SLPTC. They considered that the simplest kinetic equation, called the Erofeev equation [210,211] ... [Pg.335]

Some tours deforce of these methods have been presented in several publications, (see [6,7] and references therein). The studies of Tyson and coworkers are focused on the kinetic analysis of the budding yeast cell cycle. The molecular mechanism of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. Many experiments have been done on this system over many years there are about 125 references cited in [6]. The biological details are second to stressing the enormity of this task. The model has nearly twenty variables and that many kinetic equations, and there are about fifty parameters (rate coefficients, binding constants, thresholds, relative efficiencies). A fair number of assumptions need to be made in the cases of absence of any substantiating experimental evidence, and a fair number of approximations need to be made to simplify the kinetic equations. The complexity of this system is indicated in fig. 13.3 and its caption. [Pg.211]

The velocity of reactions in principle depends on the number of collisions per unit of time between the reactants. It may be assessed with the methods of physical chemistry. Yet, for practical applications it is determined experimentally. The experimental results are then evaluated using simplified model concepts. For this reason we speak of formal kinetics. [Pg.69]

In general, a mechanism for any complex reaction (catalytic or non-catalytic) is defined as a sequence of elementary steps involved in the overall transformation. To determine these steps and especially to find their kinetic parameters is very rare if at all possible. It requires sophisticated spectroscopic methods and/or computational tools. Therefore, a common way to construct a microkinetic model describing the overall transformation rate is to assume a simplified reaction mechanism that is based on experimental findings. Once the model is chosen, a rate expression can be obtained and fitted to the kinetics observed. [Pg.53]


See other pages where Kinetic models, simplified experimental methods is mentioned: [Pg.11]    [Pg.151]    [Pg.178]    [Pg.199]    [Pg.1876]    [Pg.22]    [Pg.226]    [Pg.362]    [Pg.597]    [Pg.85]    [Pg.2]    [Pg.402]    [Pg.370]    [Pg.319]    [Pg.159]    [Pg.712]    [Pg.274]    [Pg.93]    [Pg.370]    [Pg.48]    [Pg.11]    [Pg.563]    [Pg.355]    [Pg.74]   


SEARCH



Experimental Modeling

Experimental models

Kinetic experimental methods

Kinetic methods

Kinetic models, simplified

Kinetics method

Modeling methods

Modelling experimental

Modelling methods

Models simplified

Simplified

Simplify

© 2024 chempedia.info