Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kidney potassium

Other Potassium and Sodium Disorders. Potassium and/or sodium deficiency can lead to muscle weakness and sodium deficiency to nausea. Hyperkalemia resulting in cardiac arrest is possible from 18 g/d of potassium combined with inadequate kidney function. Faulty utilisation of K" and/or Na" can lead to Addison s or Cushing s disease. [Pg.380]

The potassium or calcium salt form of oxaUc acid is distributed widely ia the plant kingdom. Its name is derived from the Greek o>ys, meaning sharp or acidic, referring to the acidity common ia the foflage of certain plants (notably Oxalis and Mmex) from which it was first isolated. Other plants ia which oxahc acid is found are spinach, rhubarb, etc. Oxahc acid is a product of metabohsm of fungi or bacteria and also occurs ia human and animal urine the calcium salt is a principal constituent of kidney stones. [Pg.455]

Antimony compounds have been used to treat leishmaniasis ever since tartar emetic (antimony potassium tartrate) was discovered early in the 20th century to have efficacy against the mucocutaneous form of the disease. The cutaneous form has been treated with tartar emetic formulated in an ointment. Many side effects have been seen with this trivalent antimonial, some of which can be ascribed to the difficulty of obtaining pure antimony for its manufacture. These side effects include toxicity to the heart, Hver, and kidneys. Other promising trivalent antimonials have been abandoned in favor of pentavalent antimonials with lower toxicity. [Pg.269]

CP has been used as an ion-exchange material to remove radioisotopes, such as Sr, Cs (43) and U (VI) (44) from solution. CP ion-exchange resins have been used to remove calcium ions from blood (45) and calcium, magnesium, and potassium ions from wine (46). A commercial product made using CP, Calci-Bind, has been used for the treatment of kidney stones (47). [Pg.265]

In an attempt to conserve sodium, the kidney secretes renin increased plasma renin activity increases the release of aldosterone, which regulates the absorption of potassium and leads to kafluresis and hypokalemia. Hypokalemia is responsible in part for decreased glucose intolerance (82). Hyponatremia, postural hypotension, and pre-renal azotemia are considered of tittle consequence. Hypemricemia and hypercalcemia are not unusual, but are not considered harmful. However, hypokalemia, progressive decreased glucose tolerance, and increased semm cholesterol [57-88-5] levels are considered... [Pg.211]

Aldosterone, the most potent of the mineralocorticoids (Figure 25.43), is involved in the regulation of sodium and potassium balances in tissues. Aldosterone increases the kidney s capacity to absorb Na, Cl, and HgO from the glomerular filtrate in the kidney tubules. [Pg.849]

Til tee successive tubule portions contribute to the ASDN the late portion of the distal convoluted tubule, the connecting tubule, and the collecting duct. The recent observation that collecting duct-specific inactivation of aENaC in the mouse kidney does not impair sodium and potassium balance, suggests that the more proximal nephron segments (late distal convoluted tubule, connecting tubule) are mainly important for-achieving sodium and potassium balance. [Pg.480]

Hyperaldosteronism is a syndrome caused by excessive secretion of aldosterone. It is characterized by renal loss of potassium. Sodium reabsorption in the kidney is increased and accompanied by an increase in extracellular fluid. Clinically, an increased blood pressure (hypertension) is observed. Primary hyperaldosteronism is caused by aldosterone-producing, benign adrenal tumors (Conn s syndrome). Secondary hyperaldosteronism is caused by activation of the renin-angiotensin-aldosterone system. Various dtugs, in particular diuretics, cause or exaggerate secondary peadosteronism. [Pg.606]

The main endogenous mineralocorticoid is aldosterone, which is mainly produced by the outer layer of the adrenal medulla, the zonaglomerulosa. Aldostorone, like other steroids, binds to a specific intracellular (nuclear) receptor, the mineralocorticoid receptor (MR). Its main action is to increase sodium reabsotption by an action on the distal tubules in the kidney, which is accompanied by an increased excretion of potassium and hydrogen ions. [Pg.775]

Renal diseases Mutations in KCNJ1 disiupt the function of Kirl.l in apical renal outer medulla of the kidney. The loss of tubular K+ channel function and impaired K+ flux could prevent apical membrane potassium recycling and lead to antenatal Bartter s syndrome. [Pg.993]

The kidney contains the major site of renin synthesis, the juxtaglomerular cells in the wall of the afferent arteriole. From these cells, renin is secreted not only into the circulation but also into the renal interstitium. Moreover, the enzyme is produced albeit in low amounts by proximal tubular cells. These cells also synthesize angiotensinogen and ACE. The RAS proteins interact in the renal interstitium and in the proximal tubular lumen to synthesize angiotensin II. In the proximal tubule, angiotensin II activates the sodium/hydrogen exchanger (NHE) that increases sodium reabsorption. Aldosterone elicits the same effect in the distal tubule by activating epithelial sodium channels (ENaC) and the sodium-potassium-ATPase. Thereby, it also induces water reabsotption and potassium secretion. [Pg.1067]

Carbonic anhydrase is an enzyme that produces free hydrogen ions, which are then exchanged for sodium ions in the kidney tubules. Carbonic anhydrase inhibitors inhibit the action of the enzyme carbonic anhydrase This effect results in the excretion of sodium, potassium, bicarbonate, and water. Carbonic anhydrase inhibitors also decrease the production of aqueous humor in the eye, which in turn decreases intraocular pressure (IOP) (ie, the pressure within the eye). [Pg.446]

Potassium as a nutrient lowers blood pressure, prevents bone loss, and reduces the risk of kidney stones. Some of these effects are due to the loss of sodium in the urine when potassium is ingested. [Pg.90]

Table 8 5 shows that each of the four common s-block ions is abundant not only in seawater but also in body fluids, where these ions play essential biochemical roles. Sodium is the most abundant cation in fluids that are outside of cells, and proper functioning of body cells requires that sodium concentrations be maintained within a narrow range. One of the main functions of the kidneys is to control the excretion of sodium. Whereas sodium cations are abundant in the fluids outside of cells, potassium cations are the most abundant ions in the fluids inside cells. The difference in ion concentration across cell walls is responsible for the generation of nerve impulses that drive muscle contraction. If the difference in potassium ion concentration across cell walls deteriorates, muscular activity, including the regular muscle contractions of the heart, can be seriously disrupted. [Pg.555]

Moen, J., Claeson, K., Pienaar, H., Lindell, S., Ploeg, R.J., McAnulty, J.F., Vreugdenhil, P., Southard, J.H. and Belzer, F.O. (1989). Preservation of dog liver, kidney, and pancreas using the Belzer-UW solution with a high-sodium and low potassium content. Transplantation 47, 940-945. [Pg.95]

Sai, K., Takagi, A., Umemura, T., Hasegawa, R. and Kurokawa, T. (1991). Relation of 8-hydroxydeoxyguanosine formation in rat kidney to lipid peroxidation, glutathione level and relative organ weight after a single administration of potassium bromate. Jpn. J. Cancer Res. 82, 165-169. [Pg.214]

Saline laxatives containing magnesium, potassium, or phosphates should be used cautiously in persons with reduced kidney function. Monitor appropriate serum electrolyte concentrations in patients with unstable renal function evidenced by changing serum creatinine or creatinine clearance. [Pg.311]

Potassium balance is also primarily regulated by the kidney via the distal tubular cells. Reduction in nephron mass decreases tubular secretion of potassium, leading to hyperkalemia. Hyperkalemia is estimated to affect more than 50% of patients with stage 5 CKD.28... [Pg.381]

The distal tubules secrete 90% to 95% of the daily dietary intake of potassium. The fractional excretion of potassium (FEk) is approximately 25% with normal kidney function.29 The GI tract excretes the remaining 5% to 10% of dietary potassium intake. Following a large potassium load, extracellular potassium is shifted intracellularly to maintain stable extracellular levels. [Pg.381]

Patients with CKD should avoid abrupt increases in dietary intake of potassium because the kidney is unable to increase potassium excretion with an acute potassium load, particularly in latter stages of the disease. Hyperkalemia resulting... [Pg.381]


See other pages where Kidney potassium is mentioned: [Pg.691]    [Pg.601]    [Pg.985]    [Pg.117]    [Pg.691]    [Pg.601]    [Pg.985]    [Pg.117]    [Pg.375]    [Pg.380]    [Pg.380]    [Pg.536]    [Pg.483]    [Pg.185]    [Pg.141]    [Pg.203]    [Pg.205]    [Pg.207]    [Pg.214]    [Pg.296]    [Pg.16]    [Pg.52]    [Pg.138]    [Pg.140]    [Pg.273]    [Pg.992]    [Pg.446]    [Pg.448]    [Pg.86]    [Pg.93]    [Pg.49]    [Pg.380]    [Pg.382]    [Pg.411]    [Pg.412]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Dose Carcinogenicity of Potassium Bromate, KBrO3 in the Rat Kidney

Kidney potassium homeostasis

Kidneys potassium retained/excreted

Potassium kidney stones

© 2024 chempedia.info