Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketone enolates, reactions with electrophiles

In contrast to the chemical properties of enolates, azaenolates of imines exhibit a marked thermodynamic preference for the syn configuration at the C-N partial double bond (syn effect)2 due to the repulsion between the lone pair density at nitrogen and the 7t-electron density at the carbon. Thus, lithiation of imines derived from ketones occurs with strong regioselectiv-ity at the least substituted carbon, followed by a regioselective reaction with electrophiles exclusively at the carbon of the ambident azaalkyl moiety. [Pg.973]

Ketone dilithio-c /S-dianions (30, formed by treatment of /3 -stannylketones, RCOCH2-CH2SnBuCl2, with 4 equiv. of BuLi) react with imines and hydrazone selectively at the /3-anion portion to give dilithium enolate amides (31).82 Subsequent reaction with electrophiles gives y-amino ketones and related heterocycles. [Pg.12]

The reactions of ketone dilithio ,/i-dianions with imines and hydrazones have been investigated.77 The nucleophilic addition reaction to C—N double bonds took place selectively at the -position of dianions to form lithium (Z)-enolates containing a lithium amide portion, which is then transformed into y-amino ketones and related compounds by the subsequent reaction with electrophiles. [Pg.290]

Ketone dilithio a,ft-dianion species (74) have been generated by the tin-lithium exchange reaction of the lithium enolate of /3-tributyltin-substituted ketones.291 Reaction with carbon electrophiles gives substituted ketones. [Pg.32]

The insight that zinc ester enolates can be prepared prior to the addition of the electrophile has largely expanded the scope of the Reformatsky reaction.1-3 Substrates such as azomethines that quaternize in the presence of a-halo-esters do react without incident under these two-step conditions.23 The same holds true for acyl halides which readily decompose on exposure to zinc dust, but react properly with preformed zinc ester enolates in the presence of catalytic amounts of Pd(0) complexes.24 Alkylations of Reformatsky reagents are usually difficult to achieve and proceed only with the most reactive agents such as methyl iodide or benzyl halides.25 However, zinc ester enolates can be cross-coupled with aryl- and alkenyl halides or -triflates, respectively, in the presence of transition metal catalysts in a Negishi-type reaction.26 Table 14.2 compiles a few selected examples of Reformatsky reactions with electrophiles other than aldehydes or ketones.27... [Pg.293]

It is of great interest to compare this last value with the keto-enol equilibrium constant obtained similarly for acetone = 0.35 x 10-8). Indeed, in many enzyme-catalysed reactions, aldolisation for example, enamine formation is not rate-limiting, and the rate is usually controlled by subsequent electrophilic additions. Consequently, the rate depends on enamine reactivity and on the enamine concentration at equilibrium. Therefore, if one wants to compare the two processes, via enol and via enamine, in order to explain why the enamine route is usually preferred, the difference in equilibrium constants for enol and enamine formation must be taken into account. Data on ketone to enol and ketone to enamine equilibrium constants show that the enamine and enol concentrations are of similar magnitude even for relatively small concentrations of primary amine. Thereafter, since the enamine is much more reactive than the enol for reactions with electrophilic reagents (in a ratio of 4-6 powers of ten for proton addition), it can be easily understood why the amine-catalysed pathway is energetically more favourable. [Pg.70]

Phenol initially behaves like a conjugated enol in its reactions with electrophiles but, instead of giving a ketone product, the enol is formed because the very stable aromatic ring is regained. This... [Pg.548]

Maruoka et al. have developed and used A-spiro C2-symmetric chiral quaternary ammonium bifluorides [151] 102, 103, and more recently 104, to promote the regio- and anti-selective Mukaiyama-Michael addition of silyl nitronates to a, 3-unsaturated aldehydes [152], cyclic a,P-unsaturated ketones [153], and nitroalk-enes [154] with good yields and enantioselectivities (Scheme 2.52). Final chiral silyl enol ethers are easily hydrolyzed to the corresponding carbonyl compounds or functionalized at the a-position by reaction with electrophiles. [Pg.92]

Reaction with Electrophiles. The electrophilic substitution of a-silyl ketones gives the same products as those derived from the corresponding silyl enol ether. Thus reaction with bromine or thionyl chloride gives the a-bromo (or chloro) ketone, with the halogen replacing the trimethylsilyl group (eq... [Pg.563]

Alternatively, chlorotrimethylsilane can be used to react with the enolate mixture to give the corresponding enol trimethylsilyl ethers. The enol acetate or enol trimethylsilyl ether mixture can be analyzed by gas chromatography or by nuclear magnetic resonance (nmr). Table 1.2 shows the data obtained for several ketones. Some of the data were measured by the techniques just mentioned. In a number of cases the data are more qualitative and indicate the enolate which gave rise to isolated products on subsequent reaction with electrophiles. [Pg.7]

Electrophilic Reactions with Ketones, Reactions of the enolic forms of ketones with various electrophilic reagents are widely used in total steroid synthesis for the formation of all the centers of asymmetry of interest to us (Table 5). As an example of electrophilic reactions we must mention in the first place the ketonization-enolization reaction. In this reaction, the splitting off and addition of a proton to a carbon atom in the O -position to the keto group is controlled by the stereoelectronic factor and takes place predominantly in the axial direction [74]. [Pg.53]

Inductive and resonance stabilization of carbanions derived by proton abstraction from alkyl substituents a to the ring nitrogen in pyrazines and quinoxalines confers a degree of stability on these species comparable with that observed with enolate anions. The resultant carbanions undergo typical condensation reactions with a variety of electrophilic reagents such as aldehydes, ketones, nitriles, diazonium salts, etc., which makes them of considerable preparative importance. [Pg.166]

Fluoroalkenolphosphates are not only stable but also sufficiently reactive to undergo olefinaaon reactions with yiides themselves. These enol phosphates are not only precursors to enolates or ketones but also can be used directly as electrophilic reagents [79] (equation 66) (Table 26). [Pg.595]

Fluoroalkyl ketones may be used as the electrophilic partners in condensation reactions with other carbonyl compounds The highly electrophilic hexafluo-roacetone has been used in selective hexafluoroisopropyhdenation reactions with enol silyl ethers and dienolsilyl ethers [f] (equation 1)... [Pg.615]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

Carbonyl compounds are in a rapid equilibrium with called keto-enol tautomerism. Although enol tautomers to only a small extent at equilibrium and can t usually be they nevertheless contain a highly nucleophilic double electrophiles. For example, aldehydes and ketones are at the a position by reaction with Cl2, Br2, or I2 in Alpha bromination of carboxylic acids can be similarly... [Pg.866]

There is no simple answer to this question, but the exact experimental conditions usually have much to do with the result. Alpha-substitution reactions require a full equivalent of strong base and are normally carried out so that the carbonyl compound is rapidly and completely converted into its enolate ion at a low temperature. An electrophile is then added rapidly to ensure that the reactive enolate ion is quenched quickly. In a ketone alkylation reaction, for instance, we might use 1 equivalent of lithium diisopropylamide (LDA) in lelrahydrofuran solution at -78 °C. Rapid and complete generation of the ketone enolate ion would occur, and no unreacled ketone would be left so that no condensation reaction could take place. We would then immediately add an alkyl halide to complete the alkylation reaction. [Pg.881]

The mixed Claisen condensation of two different esters is similar to the mixed aldol condensation of two different aldehydes or ketones (Section 23.5). Mixed Claisen reactions are successful only when one of the two ester components has no a hydrogens and thus can t form an enolate ion. For example, ethyl benzoate and ethyl formate can t form enolate ions and thus can t serve as donors. They can, however, act as the electrophilic acceptor components in reactions with other ester anions to give mixed /3-keto ester products. [Pg.890]

Iron-acyl enolates such as 1, 2, and 3 react readily with electrophiles such as alkyl halides and carbonyl compounds (see Houben-Weyl, Vol. 13/9a p418). The reactions of these enolatc species with alkyl halides and similar electrophiles are discussed in Section D.1.1.1.3.4.1.3. To date, only the simple enolates prepared by a-deprotonation of acetyl and propanoyl complexes have been reacted with ketones or aldehydes. [Pg.517]

Scheme 2.12 shows some representative Mannich reactions. Entries 1 and 2 show the preparation of typical Mannich bases from a ketone, formaldehyde, and a dialkylamine following the classical procedure. Alternatively, formaldehyde equivalents may be used, such as l>is-(di methyl ami no)methane in Entry 3. On treatment with trifluoroacetic acid, this aminal generates the iminium trifluoroacetate as a reactive electrophile. lV,A-(Dimethyl)methylene ammonium iodide is commercially available and is known as Eschenmoser s salt.192 This compound is sufficiently electrophilic to react directly with silyl enol ethers in neutral solution.183 The reagent can be added to a solution of an enolate or enolate precursor, which permits the reaction to be carried out under nonacidic conditions. Entries 4 and 5 illustrate the preparation of Mannich bases using Eschenmoser s salt in reactions with preformed enolates. [Pg.140]

Although the reaction of ketones and other carbonyl compounds with electrophiles such as bromine leads to substitution rather than addition, the mechanism of the reaction is closely related to electrophilic additions to alkenes. An enol, enolate, or enolate equivalent derived from the carbonyl compound is the nucleophile, and the electrophilic attack by the halogen is analogous to that on alkenes. The reaction is completed by restoration of the carbonyl bond, rather than by addition of a nucleophile. The acid- and base-catalyzed halogenation of ketones, which is discussed briefly in Section 6.4 of Part A, provide the most-studied examples of the reaction from a mechanistic perspective. [Pg.328]

In reactions with azides, ketones are directly converted to 5-hydroxytriazolines. Ketone enolate 247, generated by treatment of norbornanone 246 with LDA at 0°C, adds readily to azides to provide hydroxytriazolines 248 in 67-93% yield. Interestingly, l-azido-3-iodopropane subjected to the reaction with enolate 247 gives tetracyclic triazoline derivative 251 in 94% yield. The reaction starts from an electrophilic attack of the azide on the ketone a-carbon atom. The following nucleophilic attack on the carbonyl group in intermediate 249 results in triazoline 250. The process is completed by nucleophilic substitution of the iodine atom to form the tetrahydrooxazine ring of product 251 (Scheme 35) <2004JOC1720>. [Pg.35]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

Thus, ketone enolates easily substitute chlorine in position 2 of the electrophilic nucleus of pyrazine (1,4-diazabenzene), and even in the dark, the reaction proceeds via the Sj l mechanism (Carver et al. 1981). It is expected that the introduction of the second chlorine in the ortho position to 4-nitrogen in the electrophilic nucleus of pyrazine promotes the ion-radical pathway even more effectively. However, 2,6-dichloropyrazine in the dark or subjected to light reacts with the same nucleophiles by Sr.,2 and not S nI mechanism (Carver et al. 1983). The authors are of the opinion that two halogens in the pyrazine cycle facilitate the formation of a-complex to the extent that deha-logenation of anion-radicals in solution and a subsequent nucleophilic attack of free pyrazine radical become virtually impossible. Thus, the reaction may either involve or exclude the intermediate a-complex, and only special identification experiments can tell which is the true one. [Pg.223]

Hydroxycoumarin can be considered as an enol tautomer of a 1,3-dicarbonyl compound conjugation with the aromatic ring favours the enol tautomer. This now exposes its potential as a nucleophile. Whilst we may begin to consider enolate anion chemistry, no strong base is required and we may formulate a mechanism in which the enol acts as the nucleophile, in a simple aldol reaction with formaldehyde. Dehydration follows and produces an unsaturated ketone, which then becomes the electrophile in a Michael reaction (see Section 10.10). The nucleophile is a second molecule of 4-hydroxycoumarin. [Pg.419]

The first reaction involves a ketone reaction with an aldehyde under basic conditions, so enolate anion chemistry is likely. This is a mixed aldol reaction the acetone has acidic a-hydrogens to form an enolate anion, and the aldehyde is the more reactive electrophile. The reaction is then driven by the ability of the intermediate alcohol to dehydrate to a conjugated ketone. [Pg.663]

Enantioselective -Functionalization of Aldehydes and Ketones The direct and enantiosective functionalization of enolates or enolate equivalents with carbon-, nitrogen-, oxygen-, sulfur- or halogen-centered electrophiles represents a powerful transformation of chemical synthesis and of fundamental importance to modem practitioners of asymmetric molecule constmction. Independent studies from List, J0rgensen, Cordova, Hayashi, and MacMiUan have demonstrated the power of enamine catalysis, developing catalytic enantioselective reactions such as... [Pg.330]

The metalation of vinyl ethers, the reaction of a-lithiated vinyl ethers obtained thereby with electrophiles and the subsequent hydrolysis represent a simple and efficient method for carbonyl umpolung. Thus, lithiated methyl vinyl ether 56 and ethyl vinyl ether 54, available by deprotonation with t- or n-butyllithium, readily react with aldehydes, ketones and alkyl halides. When the enol ether moiety of the adducts formed in this way is submitted to an acid hydrolysis, methyl ketones are obtained as shown in equations 72 and 73 . Thus, the lithiated ethers 56 and 54 function as an acetaldehyde d synthon 177. The reactivity of a-metalated vinyl ethers has been reviewed recently . [Pg.885]

These reactions are divided into two sections. In the former, representative examples of organic electrophiles, which can be used in reactions with magnesium ketone enolates, are summarized. The second section shows that magnesium ketone enolates can be employed as interesting alternatives to their more known lithium counterparts in aldol addition reactions. This part is discussed in terms of regio- and stereoselectivity. [Pg.472]

Satoh and coworkers further investigated this reaction and found that, in some cases, magnesium /3-oxido carbenoids gave better results. Trapping of the enolate intermediates with several electrophiles was successfully carried out and a new method for the synthesis of one-carbon expanded cyclic a,a-disubstituted ketones from lower cyclic ketones was realized. An example using 1,4-cyclohexanedione mono ethylene ketal (195) as a representative cyclic ketone is shown in Table 15. ... [Pg.761]

Enantioselective condensation of aldehydes and enol silyl ethers is promoted by addition of chiral Lewis acids. Through coordination of aldehyde oxygen to the Lewis acids containing an Al, Eu, or Rh atom (286), the prochiral substrates are endowed with high electrophilicity and chiral environments. Although the optical yields in the early works remained poor to moderate, the use of a chiral (acyloxy)borane complex as catalyst allowed the erythro-selective condensation with high enan-tioselectivity (Scheme 119) (287). This aldol-type reaction may proceed via an extended acyclic transition state rather than a six-membered pericyclic structure (288). Not only ketone enolates but ester enolates... [Pg.123]


See other pages where Ketone enolates, reactions with electrophiles is mentioned: [Pg.77]    [Pg.89]    [Pg.453]    [Pg.815]    [Pg.456]    [Pg.1]    [Pg.588]    [Pg.438]    [Pg.686]   
See also in sourсe #XX -- [ Pg.472 , Pg.473 , Pg.474 , Pg.475 , Pg.476 , Pg.477 , Pg.478 , Pg.479 , Pg.480 , Pg.481 , Pg.482 , Pg.483 ]




SEARCH



Electrophilic ketone

Electrophilic reactions with ketones

Enol ketones

Enols ketonization

Enols reactions with

Ketone enolate

Ketone enolates

Ketones electrophilic reactions

Ketones enolization

Ketones, enol, reaction with

Ketonization-enolization

Reaction with ketone

Reactions with electrophiles

Reactions, with enolates

With Electrophiles

© 2024 chempedia.info