Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic reactions with ketones

Electrophilic Reactions with Ketones, Reactions of the enolic forms of ketones with various electrophilic reagents are widely used in total steroid synthesis for the formation of all the centers of asymmetry of interest to us (Table 5). As an example of electrophilic reactions we must mention in the first place the ketonization-enolization reaction. In this reaction, the splitting off and addition of a proton to a carbon atom in the O -position to the keto group is controlled by the stereoelectronic factor and takes place predominantly in the axial direction [74]. [Pg.53]

The direction of enolization is determined by the comparative stability of the enols formed. Consequently, in accordance with the above discussion (p. 49), in the cis-/3-decalone (171) system enolization will take place predominantly with the splitting out of a proton from C4 (172) and in the trans-/ -decalone (173) system from C2 (174). [Pg.53]

The direction of enolization of /S-decalones obviously also governs the direction of the subsequent attack of an electrophilic reagent on the enol [Pg.53]

Isomerization of C9-ketones Ci4-ketones A -bond to A -bond Michael reaction with C9 ketones Reduction with alkali metals of A -bond  [Pg.54]

2 (ii)-bond aromatic ring C Catalytic hydrogenation of A -bond t A ( 0)-bond  [Pg.54]


The applicability of the various reactions leading to the formation of centers of asymmetry in total synthesis is characterized by the data of Table 5. The formation of each center of asymmetry is carried out by means of very diverse reactions from which, however, we can single out some of the most characteristic. Thus, the C3 and C9 centers are formed predominantly in reductions with alkali metals, the and 0 3 centers in electrophilic reactions with ketones, and the 0 4 center in catalytic hydrogenation. [Pg.52]

Vinyl trifluoromethanesulfonates (triflates) are a new class of compounds, unknown before 1969, that have been used most extensively in solvolytic studies to generate vinyl cations.2,3,812 Three methods have been used to prepare these sulfonic esters. The first, involving the preparation and decomposition of acyltriazines,4 requires several steps to prepare the acyltriazines and is limited to the preparation of fully substituted vinyl triflates. The second method involves the electrophilic addition of trifluoromethanesulfonic acid to acetylenes5,8,15 and, consequently, is not applicable to the preparation of trisubstituted vinyl triflates and certain cyclic vinyl triflates. However, this second procedure is relatively simple and often gives purer products in higher yield than the subsequently discussed reaction with ketones. Table I lists vinyl triflates that have been prepared by this procedure. ... [Pg.41]

The metalation chemistry of the imidazoline system has received attention only recently, with the lithiation of l-benzyl-2-imidazoline being found to occur at the 2-position (90TL1767). Although the reactivity of the lithi-ated species with alkyl halides was poor, better results were achieved with disulfide and carbonyl electrophiles (90TL1767,90TL1771). The products formed by reaction with ketones were found to be unstable with respect to fragmentation, and this result was utilized to provide a new route for the synthesis of unsymmetric ketones (Scheme 138). [Pg.264]

The electrocarboxylation of aldehydes and ketones leads to the corresponding a-hydroxycarboxylic acids that can easily be converted into carboxylic acids via a hydrogenation reaction [7]. It has been reported that the electrocarboxylation of aromatic ketones occurs through the reaction of C02 onto the activated carbon atom of the carbonyl group of the ketyl radical anion generated upon electron transfer to the ketone [7]. Otherwise, the aforementioned intermediate is likely to be a resonance hybrid (see Equation 12.23), and its electrophilic reaction with C02 may take place both at the carbon or the oxygen atom [42, 43]. [Pg.324]

A different approach to these enones had earlier been developed by Trost and Jungheim who employed 1-formyl-1-phenylthiocyclopropane as electrophile in aldol reactions with ketone enolates (equation 111). The aldehyde required for this route can be prepared... [Pg.407]

O Scheme 25) [150]. The latter acts as an acceptor only because of its good electrophilic and non-nucleophilic character. The a-thioacetal functionality in this enantioselective crosscoupling allows access to highly oxidized, stereo-defined synthons of broad versatility. Moreover, the observed reactivity profile makes them pre-eminent substrates for highly selective cross-aldol reactions with ketone donors. [Pg.879]

Tertiary benzamides can be efficiently metallated at the ortho position by Bu Li at -78 °C in the presence of TMEDA the aryl-lithium derivatives thus produced react well with a range of electrophiles. Of particular relevance to this section of the Report is their reaction with ketones leading to the phthalide derivatives (56). 3-Aryl-3-methylphthalides (57) are available from a Friedel-Crafts reaction between o-acetylbenzoyl chloride and arenes using stannic chloride as Lewis acid. ° A total synthesis of the phthalide derivative iso-ochracinic acid (58) has been reported. ... [Pg.81]

Catalysis of Intramolecular Sakurai Reactions. Et AICI2 has been extensively used as a catalyst for intramolecular Sakurai additions. Enones (eqs 12 and 13) have been most extensively explored. Different products are often obtained with fluoride or Lewis acid catalysis. EtAlCl2 is the Lewis acid used most often although TiCLi and BF3 have also been used. EtAlCl2 also catalyzes intramolecular Sakurai reactions with ketones and other electrophiles. The cyclization of electrophilic centers onto alkylstannanes and Prins-type additions to vinylsilanes are also catalyzed by EtAlCl2. [Pg.179]

Friedel-Crafts acylation using nittiles (other than HCN) and HCI is an extension of the Gattermann reaction, and is called the Houben-Hoesch reaction (120—122). These reactions give ketones and are usually appHcable to only activated aromatics, such as phenols and phenoHc ethers. The protonated nittile, ie, the nitrilium ion, acts as the electrophilic species in these reactions. Nonactivated ben2ene can also be acylated with the nittiles under superacidic conditions 95% trifluoromethanesulfonic acid containing 5% SbF (Hg > —18) (119). A dicationic diprotonated nittile intermediate was suggested for these reactions, based on the fact that the reactions do not proceed under less acidic conditions. The significance of dicationic superelectrophiles in Friedel-Crafts reactions has been discussed (123,124). [Pg.559]

Reactions with Aldehydes and Ketones. An important use for alkylphenols is ia phenol—formaldehyde resias. These resias are classified as resoles or aovolaks (see Phenolic resins). Resoles are produced whea oae or more moles of formaldehyde react with oae mole of pheaol uader basic catalysis. These resias are thermosets. Novolaks are thermoplastic resias formed whea an excess of phenol reacts with formaldehyde under acidic conditions. The acid protonates formaldehyde to generate the alkylating electrophile (17). [Pg.60]

SuIfona.tlon, Sulfonation is a common reaction with dialkyl sulfates, either by slow decomposition on heating with the release of SO or by attack at the sulfur end of the O—S bond (63). Reaction products are usually the dimethyl ether, methanol, sulfonic acid, and methyl sulfonates, corresponding to both routes. Reactive aromatics are commonly those with higher reactivity to electrophilic substitution at temperatures > 100° C. Tn phenylamine, diphenylmethylamine, anisole, and diphenyl ether exhibit ring sulfonation at 150—160°C, 140°C, 155—160°C, and 180—190°C, respectively, but diphenyl ketone and benzyl methyl ether do not react up to 190°C. Diphenyl amine methylates and then sulfonates. Catalysis of sulfonation of anthraquinone by dimethyl sulfate occurs with thaHium(III) oxide or mercury(II) oxide at 170°C. Alkyl interchange also gives sulfation. [Pg.200]

Inductive and resonance stabilization of carbanions derived by proton abstraction from alkyl substituents a to the ring nitrogen in pyrazines and quinoxalines confers a degree of stability on these species comparable with that observed with enolate anions. The resultant carbanions undergo typical condensation reactions with a variety of electrophilic reagents such as aldehydes, ketones, nitriles, diazonium salts, etc., which makes them of considerable preparative importance. [Pg.166]

Fluoroalkenolphosphates are not only stable but also sufficiently reactive to undergo olefinaaon reactions with yiides themselves. These enol phosphates are not only precursors to enolates or ketones but also can be used directly as electrophilic reagents [79] (equation 66) (Table 26). [Pg.595]

Fluoroalkyl ketones may be used as the electrophilic partners in condensation reactions with other carbonyl compounds The highly electrophilic hexafluo-roacetone has been used in selective hexafluoroisopropyhdenation reactions with enol silyl ethers and dienolsilyl ethers [f] (equation 1)... [Pg.615]

In contrast, fluorinated ketones have been used as both nucleophilic and electrophilic reaction constituents The (Z)-lithium enolate of 1 fluoro 3,3-di-methylbutanone can be selectively prepared and undergoes highly diastereoselec-tive aldol condensations with aldehydes [7] (equation 8) (Table 4)... [Pg.617]

Fluorinated esters may also act as electrophiles in reactions with nonfluori-nated ketones [28] (equation 23) or malononitrile [29] (equation 24). Unfortunately, the yields of -diketones may be modest, but those of p-keto nitnles are excellent (Table 9)... [Pg.628]

C-C bonds can be formed by reaction with alkyl iodides or more usefully by reaction with metal carbonyls to give aldehydes and ketones e.g. Ni(CO)4 reacts with LiR to form an unstable acyl nickel carbonyl complex which can be attacked by electrophiles such as H+ or R Br to give aldehydes or ketones by solvent-induced reductive elimination ... [Pg.105]

The second group of reactions is called vicinal difunctionalization. They embrace the C2 and C3 positions of the furan ring simultaneously. Thus, complex 3 (X = O, R = R = R = H) reacts with benzaldehyde dimethyl acetal to give 4H-furanium cation (the product of electrophile addition at C4), which experiences further attack by the methoxide group with formation of the acetal 8 (950M2861). This reaction is possible in the presence of the Lewis acid (BF3—OEt2). Reaction with methyl vinyl ketone in methanol, when run in identical conditions. [Pg.3]

The reaction starts with the nucleophilic addition of a tertiary amine 4 to the alkene 2 bearing an electron-withdrawing group. The zwitterionic intermediate 5 thus formed, has an activated carbon center a to the carbonyl group, as represented by the resonance structure 5a. The activated a-carbon acts as a nucleophilic center in a reaction with the electrophilic carbonyl carbon of the aldehyde or ketone 1 ... [Pg.28]

The classical Reformatsky reaction consists of the treatment of an a-halo ester 1 with zinc metal and subsequent reaction with an aldehyde or ketone 3. Nowadays the name is used generally for reactions that involve insertion of a metal into a carbon-halogen bond and subsequent reaction with an electrophile. Formally the Reformatsky reaction is similar to the Grignard reaction. [Pg.237]

Enamines 1 are useful intermediates in organic synthesis. Their use for the synthesis of a-substituted aldehydes or ketones 3 by reaction with an electrophilic reactant—e.g. an alkyl halide 2, an acyl halide or an acceptor-substituted alkene—is named after Gilbert Stork. [Pg.267]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]


See other pages where Electrophilic reactions with ketones is mentioned: [Pg.56]    [Pg.31]    [Pg.85]    [Pg.505]    [Pg.1246]    [Pg.1264]    [Pg.547]    [Pg.170]    [Pg.114]    [Pg.446]    [Pg.342]    [Pg.244]    [Pg.27]    [Pg.251]    [Pg.531]    [Pg.104]   


SEARCH



Electrophilic ketone

Ketone enolates, reactions with electrophiles

Ketones electrophilic reactions

Reaction with ketone

Reactions with electrophiles

With Electrophiles

© 2024 chempedia.info