Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketenes and alkenes

Cycloadditions of ketenes and alkenes have synthetic utility for the preparation of cyclobutanones.163 The stereoselectivity of ketene-alkene cycloaddition can be analyzed in terms of the Woodward-Hoffmann rules.164 To be an allowed process, the [2ir + 2-tt] cycloaddition must be suprafacial in one component and antarafacial in the other. An alternative description of the TS is a 2irs + (2tts + 2tts) addition.165 Figure 6.13 illustrates these combinations. Note that both representations predict formation of the d.v-substituted cyclobutanone. [Pg.539]

Intramolecular ketene cycloadditions are possible if the ketene and alkene functionalities can achieve an appropriate orientation.170... [Pg.540]

The selective formation of the more hindered isomer is a general property of the [2 + 2] cycloadditions of ketenes and alkenes. Z-Alkenes react with monosubstituted ketenes to give the c/.v,cM-2,3,4-trisubstituted cyclobutanone while T -alkencs give c/.v,rram-2,3,4-trisubstituted cyclobutanones stereospecifically93. [Pg.859]

Cl2C=C=0 is -9.15 eV. Clearly, the presence of these groups raises the energy of the HOMO and would be expected to increase the rate of a cycloaddition driven by the LUMO of an alkene. This has been noted in many intermolecular reactions of ketenes and alkenes.259 xhis rate enhancement is apparent in the attempted intramolecular cyclization (see below) of 316 (X = H), which failed. When the a-chloro analog (316, X = Cl) was prepared, however, treatment with triethylamine led to 317, which cyclized to give a 55% yield of the [2+2]-cycloadduct (318), along with 19% of the ene adduct (319-see sec. 11.13) where X = Cl. [Pg.979]

Intramolecular ketene cycloadditions are also observed in compounds having both ketene and alkene functionalities in appropriate orientations. For example, 19 gives 20 [6] and 21 gives 22 [7]. [Pg.40]

As in similar cycloadditions of ketenes and alkenes, the Staudinger reaction is likely to occur via dipolar intermediates 4 in a thermally allowed two-step process to give ds-3,4-disubstituted azetidin-2-ones 5 stereoselectively. [Pg.53]

Monocyclic /3-lactams undergo thermolysis or photolysis to give alkenes and isocyanates or ketenes and imines depending on the substitution pattern (75S547 p. 586). Apparently, thermolysis favours the former pathway while photolysis favours the latter (68CB2669). [Pg.249]

The thermal [2 + 2] cycloaddition is limited to certain activated alkenes. For instance tetrafluoroethylene, tetrachloroethylene, allenes e.g. 17, ketenes and ena-mines can form cyclic dimers or react with other alkenes ... [Pg.79]

Other interesting three-component cycloadditions are the following Sulfur dioxide and diazo compounds lead to episulfones (equation 75)436—in a special case to 4,5-dihydrothiepine S,S-dioxides437 sulfur dioxide, ketene, and arylimine lead to thiazole derivatives438 (equation 76) sulfur dioxide, quinone, and alkenes lead to benzoxathiane derivatives439 (equation 77). [Pg.214]

FIGURE 15.11 Orbital overlap in -I- ft2a, cycloaddition between (a) two alkene molecules and (b) a ketene and an alkene. S and L stand for small and large. [Pg.1079]

Cycloaddition reactions of ketenes with alkenes have long been known to give cyclobutanones [123] and to proceed with retention of the configurations [124], The reactions were classified into the symmetry-allowed cycloaddition reactions... [Pg.46]

The primary delocalization occurs from tz of alkenes to of ketenes (Scheme 25). The pseudoexcitations occur through the HOMO-HOMO and LUMO-LUMO interactions (Scheme 4). The HOMO of the donors is n as usual, whereas the HOMO of the acceptors is not but The HOMO-HOMO interaction occurs between the C=C bonds of alkenes and ketenes and promotes the reaction accross the C=C bond of ketenes. The important DA configuration is the intramolecular... [Pg.47]

The psudoexcitation preferentially occurs in ketenes. The energy gap is smaller between and of ketenes than between n and it of alkenes. The orbital of ketene is raised in energy by the interaction with the n orbital on the carbonyl oxygen above n of alkenes. The orbital of ketenes is lower in energy than n of alkenes. The pseudoexcitation is preferred in ketenes and occurs through the interaction. The [2h-2] cycloaddition reactions take place across the C=C bond of ketenes rather than C=0 bond. [Pg.47]

As discussed in Section 10.4 of Part A, concerted suprafacial [2tt + 2tt] cycloadditions are forbidden by orbital symmetry rules. Two types of [2 + 2] cycloadditions are of synthetic value addition reactions of ketenes and photochemical additions. The latter group includes reactions of alkenes, dienes, enones, and carbonyl compounds, and these additions are discussed in the sections that follow. [Pg.538]

Using standard references and protocol, we find the three reactions are respectively endothermic by ca 2, 8 and 6 kJmol-1, or ca 2, 4 and 3 kJmol-1 once one remembers to divide by 2 the last two numbers because the allene is dialkylated. So doing, from equations 10 and 11 we find an average ca 3 kJmol-1 (per alkyl group) lessened stability for alkylated allenes than the correspondingly alkylated alkenes. This is a small difference that fits most naturally in the study of substituted cumulenes such as ketenes and ketenimines, i.e. not in this chapter. But it is also a guideline for the understanding of polyenes with more cumulated double bonds. [Pg.73]

Ketenes and isocyanates also undergo facile [6 + 2]-photocycloaddition with metal complexed cyclic polyenes. Irradiation of 232 in the presence of diphenylketene gave 256 in good yield (Scheme 58)120. This should be contrasted with the normal behavior of ketenes toward alkenes, which typically involves [2 + 2]-cycloaddition. Isocyanates such as 257 work as well. The adducts are produced in high yields and have considerable potential in synthesis. [Pg.317]

The reaction course is shown in Scheme 4. Enyne 12 reacts with 2 to give vinyl carbene complex 17, which is in a state of equilibrium with vinyl ketene complex 21. [2+2] Cycloaddition of the ketene moiety and alkene part in 21 gives cyclob-utanone 22. On the other hand, the vinyl carbene complex 17 reacts with the alkene intramolecularly to produce metalacyclobutane 18. From metalacyclob-utane 18, reductive elimination occurs to give cyclopropane derivative 23. Ret-... [Pg.145]

Diels-Alder, imino dienophiles, 65, 2 Diels-Alder, intramolecular, 32, 1 Diels-Alder, maleic anhydride, 4, 1 [4 -h 3], 51, 3 of enones, 44, 2 of ketenes, 45, 2 of nitrones and alkenes, 36, 1 Pauson-Khand, 40, 1 photochemical, 44, 2 retro-Diels-Alder reaction, 52, 1 53, 2 [6-h4], 49, 2 [3-h2], 61, 1 Cyclobutanes, synthesis ... [Pg.587]

Isomeric polymers can also be obtained from a single monomer if there is more than one polymerization route. The head-to-head placement that can occur in the polymerization of a vinyl monomer is isomeric with the normal head-to-tail placement (see structures III and IV in Sec. 3-2a). Isomerization during carbocation polymerization is another instance whereby isomeric structures can be formed (Sec. 5-2b). Monomers with two polymerizable groups can yield isomeric polymers if one or the other of the two alternate polymerization routes is favored. Examples of this type of isomerism are the 1,2- and 1,4-polymers from 1,3-dienes (Secs. 3-14f and 8-10), the separate polymerizations of the alkene and carbonyl double bonds in ketene and acrolein (Sec. 5-7a), and the synthesis of linear or cyclized polymers from non-conjugated dienes (Sec. 6-6b). The different examples of constitutional isomerism are important to note from the practical viewpoint, since the isomeric polymers usually differ considerably in their properties. [Pg.620]

Carbonyl cyanide reacts readily with ketene and dialkylketenes to give the corresponding dicyano-/3-lactones (equation 109). This reaction seems entirely analogous to the addition of carbonyl cyanide with alkenes to give oxetanes, described in the preceding section (75MI51302). [Pg.398]

Ketene acetals and thioacetals can be used as ketene equivalents in cyclobutanone synthesis in situations where ketene to alkene cycloadditions are inefficient such as in the case of electron-deficient alkenes.14 Although thermal cycloadditions of ketene acetals and thioacetals with electron-deficient alkenes have been observed (see Section 1,3.2.1.), such cycloadditions proceed more efficiently and under milder conditions with metal catalysts. Efficient cycloadditions between ketene dimethyl acetal and alkenes substituted by a single electron-withdrawing group have been reported.15... [Pg.145]

The stereochemistry of ketene to alkcne cycloadditions is such that retention of the alkene configuration is observed. Furthermore, in cycloadditions with unsymmetrically substituted ketenes the larger of the two ketene substituents ends up as with respect to the adjacent alkene substituent (or eiulo in cycloalkene cycloadditions). This stereochemical outcome was originally attributed to the concerted [ff2a + n2a] nature of kctcnc to alkene cycloadditions,21 although more recent experimental and theoretical evidence indicate that these reactions are asynchronous and in some cases in which polarized double bonds are involved actual zwittcrions may be intermediates.9 1195 Also in certain cases the endo product in ketene to alkene cycloadditions may be the thermodynamic product from equilibration studies.22,23 Nevertheless, stereochemical control can be achieved in most such reactions as shown by the examples of 12,24 13,29 14,25 15,26 16,27 and 17.28... [Pg.192]

Some elegant natural product syntheses have used the intramolecular ketene to alkene cycloaddition as the key step in the reaction sequence.146 Some examples are illustrated by the formation of 8,147 9,148 and 10.149... [Pg.209]

The stereochemistry with respect to the ketene iminium salt in cases of monosubstituted or unsymmetrically disubstituted derivatives in cycloadditions to alkenes show differences from the ketene counterpart. In contrast to ketene cycloadditions of monosubstituted ketenes with alkenes where the substituent in the bicyclic derivative ends up in the endo position, the cycloaddition of two monosubstituted ketene iminium salts with cyclopentene and cyclohexenc gives the e.wp-substituted derivatives 4.6... [Pg.215]

The diverse chemistry of carbenes is beyond the scope of this account, but a few typical reactions are shown here to illustrate the usefulness of the photochemical generation of these reactive species. A carbene can insert into a C—H bond, and this finds application in the reaction of an a-diazoamide to produce a P-lactam (5.29). Carbenes derived from o-diazoketones can rearrange to ketenes, and thus a route is opened up to ring-contraction for making more highly strained systems <5.301. Carbenes also react with alkenes, often by cycloaddition to yield cyclopropanes in a process that can be very efficient (5.31) and highly stereoselective (5.321. [Pg.152]

Triazines are generally more reactive in [2 + 4] cycloaddition in comparison with 1,2,3-tria-zines. The wide variety of dienophiles can be employed enamines, enaminones, vinyl silyl ethers, vinyl thioethers, cyclic ketene jV,O-acetals, /V-phenylmaleimide, 6-dimethylaminopentafulvene, 2-alkylidene-imidazolidines (cychc ketene aminals), cyclic vinyl ethers, arynes, benzocyclopropene, acetylenes, and alkenes like ethylene, (Z)-but-2-ene, cyclopentene, cyclooctene and bicyclo[2.2.1]hept-2-ene, hexa-1,5-diene, cycloocta-1,5-diene, diallyl ether, cyclododeca-l,5,9-triene,... [Pg.230]

Abstract The main computational studies on the formation of (3-lactams through [2+2] cycloadditions published during 1992-2008 are reported with special emphasis on the mechanistic and selectivity aspects of these reactions. Disconnection of the N1-C2 and C3-C4 bonds of the azetidin-2-one ring leads to the reaction between ketenes and imines. Computational and experimental results point to a stepwise mechanism for this reaction. The first step consists of a nucleophilic attack of the iminic nitrogen on the sp-hybridized carbon atom of the ketene. The zwitterionic intermediate thus formed yields the corresponding (3-1 actant by means of a four-electron conrotatoty electrocyclization. The steroecontrol and the periselectivity of the reaction support this two-step mechanism. The [2+2] cycloaddition between isocyanates and alkenes takes place via a concerted (but asynchronous) mechanism that can be interpreted in terms of a [n2s + (n2s + n2s)] interaction between both reactants. Both the regio and the stereochemistry observed are compatible with this computational model. However, the combination of solvent and substituent effects can result in a stepwise mechanism. [Pg.313]


See other pages where Ketenes and alkenes is mentioned: [Pg.539]    [Pg.208]    [Pg.861]    [Pg.115]    [Pg.539]    [Pg.208]    [Pg.861]    [Pg.115]    [Pg.46]    [Pg.329]    [Pg.69]    [Pg.126]    [Pg.190]    [Pg.210]   


SEARCH



Alkenes ketenes

© 2024 chempedia.info