Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocations polymerization

Isomeric polymers can also be obtained from a single monomer if there is more than one polymerization route. The head-to-head placement that can occur in the polymerization of a vinyl monomer is isomeric with the normal head-to-tail placement (see structures III and IV in Sec. 3-2a). Isomerization during carbocation polymerization is another instance whereby isomeric structures can be formed (Sec. 5-2b). Monomers with two polymerizable groups can yield isomeric polymers if one or the other of the two alternate polymerization routes is favored. Examples of this type of isomerism are the 1,2- and 1,4-polymers from 1,3-dienes (Secs. 3-14f and 8-10), the separate polymerizations of the alkene and carbonyl double bonds in ketene and acrolein (Sec. 5-7a), and the synthesis of linear or cyclized polymers from non-conjugated dienes (Sec. 6-6b). The different examples of constitutional isomerism are important to note from the practical viewpoint, since the isomeric polymers usually differ considerably in their properties. [Pg.620]

G5. J. P. Kennedy and E. Marechal, Carbocation polymerization, Wiley, New York, 1982,ISBN 0471017876. [Pg.349]

G. Sauvet and P. Sigwalt, Carbocation polymerization general aspects and initiation, in Comprehensive polymer science, Vol. 3, G. C. Eastmond, A. Ledwith, S. Russo, and P. Sigwalt, eds., Pergamon, Oxford, 1989, ISBN 0080325157, Chapter 39. [Pg.353]

For obtaining a cationic polymerization, the new carbocation generated between R and the monomer should have enough stability to be relatively easily formed and to continue the polymerization (for example, CH2=CH2 is not polymerized using a cationic initiator, while (CH3)2C=CH2 can be polymerized because the species RCH2-C(CH3)2 is stable enough to be formed). The stability of the carbocation increases as the chain length increases. Chain transfer reactions are common in carbocation polymerization. The termination reactions typically occur because of the combination of the cationic component with a counterion. [Pg.5]

As we have seen earlier, the propagating species in cationic chain polymerization is a positively charged carbon species. The older term for this trivalent, trigonal, positively charged carbon ion is carbonium ion which we have used up to this point. Olah [10] proposed that the term carbenium ion be used instead of carbonium ion, the latter being reserved for pentavalent, charged carbon ions, and the term carbocation for both carbonium and carbenium ions. Since the term carbenium ion is not universally followed, to avoid the controversy we will henceforth refer to the propagating species as carbocations. Most text and journal references use the term carbocation and the term carbocation polymerization is used synonymously with cationic polymerization in the literature. [Pg.704]

In some special cases, a Brpnsted acid does not need to be the only initiating species. If heterolytical cleavage of one of the alkyl groups results with a stable carbocation, polymerization can possibly be initiated by this intermediate structure (Scheme 11.5). [Pg.425]

Indeed this reaction can be viewed as a model for the initiation and termination reactions for the carbocation polymerizations induced by alkylaluminum/coinitiator systems. In the absence of monomer, alkylation of the carbocation occurs exclusively however, in the presence of a suitable polymerizable olefin this nucleophile successfully competes for the cation and initiation ensues. In this latter manner and depending on the reaction conditions (structure of the monomer and its... [Pg.28]

The discussion below follows closely to that of Szwarc and applies to a cationic chain polymerization, but the principle is general. A traditional nonliving carbocation polymerization system might be characterized by the following typical kinetic parameters ... [Pg.88]

The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that fonn tertiary carbocations. In some cases reaction conditions can be developed that favor the formation of higher molecular-weight polymers. Because these reactions proceed by way of carbocation intermediates, the process is refened to as cationic polymerization. [Pg.267]

DFT molecular dynamics simulations were used to investigate the kinetics of the chemical reactions that occur during the induction phase of acid-catalyzed polymerization of 205 [97JA7218]. These calculations support the experimental finding that the induction phase is characterized by the protolysis of 205 followed by a rapid decomposition into two formaldehyde molecules plus a methylenic carbocation (Scheme 135). For the second phase of the polymerization process, a reaction of the protonated 1,3,5-trioxane 208 with formaldehyde yielding 1,3,5,7-tetroxane 209 is discussed (Scheme 136). [Pg.82]

Cationic polymerizations work better when the monomers possess an electron-donating group that stabilizes the intermediate carbocation. For example, isobutylene produces a stable carbocation, and usually copolymerizes with a small amount of isoprene using cationic initiators. The product polymer is a synthetic rubber widely used for tire inner tubes ... [Pg.307]

The initiator can be a radical, an acid, or a base. Historically, as we saw in Section 7.10, radical polymerization was the most common method because it can be carried out with practically any vinyl monomer. Acid-catalyzed (cationic) polymerization, by contrast, is effective only with vinyl monomers that contain an electron-donating group (EDG) capable of stabilizing the chain-carrying carbocation intermediate. Thus, isobutylene (2-methyl-propene) polymerizes rapidly under cationic conditions, but ethylene, vinyl chloride, and acrylonitrile do not. Isobutylene polymerization is carried out commercially at -80 °C, using BF3 and a small amount of water to generate BF3OH- H+ catalyst. The product is used in the manufacture of truck and bicycle inner tubes. [Pg.1207]

Synthetic polymers can be classified as either chain-growth polymen or step-growth polymers. Chain-growth polymers are prepared by chain-reaction polymerization of vinyl monomers in the presence of a radical, an anion, or a cation initiator. Radical polymerization is sometimes used, but alkenes such as 2-methylpropene that have electron-donating substituents on the double bond polymerize easily by a cationic route through carbocation intermediates. Similarly, monomers such as methyl -cyanoacrylate that have electron-withdrawing substituents on the double bond polymerize by an anionic, conjugate addition pathway. [Pg.1220]

The propagating species involved in the polymerization of cyclic formal seem to resemble carbocations, and random copolymers are formed in the copolymerization of cyclic formals with styrene. For the copolymerization of DOL with styrene, the DOL-St cross-sequence was estimated, by NMR or by chemical methods, from the decrease of the formal unit in the copolymer and the formation of nearly random copolymer was confirmed132. ... [Pg.11]

It is to be noted that N-vinylcarbazole (NVC) undergoes also living cationic polymerization with hydrogen iodide at —40 °C in toluene or at —78 °C in methylene chloride and that in this case no assistance of iodine as an activator is necessary 10d). NVC forms a more stable carbocation than vinyl ethers, and the living propagation proceeds by insertion between the strongly interacting NVC-cation and the nucleophilic iodide anion. [Pg.92]

Carbocations as reactive intermediates play an essential role in organic reactions and have been thoroughly researched 102, l0J). The individual quality of the cationic polymerization results from the reproduction of the cationic reactive intermediate in every propagation step during the addition of monomers. [Pg.203]

The heats of formation are less suited to characterizing the stability and/or reactivity of carbocations as models of cationic chain ends in cationic polymerizations71). Model reactions closely connected to the cationic polymerization mechanism are better suited to this characterization, for example ... [Pg.204]

Whether formed by pathway 3 or 4, the new carbocation normally reacts further in an effort to stabilize itself, usually by pathway 1 or 2. However, 15 can add to another alkene molecule, and this product can add to still another, and so on. This is one of the mechanisms for vinyl polymerization. [Pg.227]

There is much evidence" for this mechanism, including side products (RH, alkenes) characteristic of free-radical intermediates and the fact that electrolysis of acetate ion in the presence of styrene caused some of the styrene to polymerize to polystyrene (such polymerizations can be initiated by free radicals, see p. 978). Other side products (ROH, RCOOR) are sometimes found these stem from further oxidation of the radical R to the carbocation... [Pg.942]

Indeed, cumyl carbocations are known to be effective initiators of IB polymerization, while the p-substituted benzyl cation is expected to react effectively with IB (p-methylstyrene and IB form a nearly ideal copolymerization system ). Severe disparity between the reactivities of the vinyl and cumyl ether groups of the inimer would result in either linear polymers or branched polymers with much lower MW than predicted for an in/mcr-mediated living polymerization. Styrene was subsequently blocked from the tert-chloride chain ends of high-MW DIB, activated by excess TiCU (Scheme 7.2). [Pg.202]

There are, however, serious problems that must be overcome in the application of this reaction to synthesis. The product is a new carbocation that can react further. Repetitive addition to alkene molecules leads to polymerization. Indeed, this is the mechanism of acid-catalyzed polymerization of alkenes. There is also the possibility of rearrangement. A key requirement for adapting the reaction of carbocations with alkenes to the synthesis of small molecules is control of the reactivity of the newly formed carbocation intermediate. Synthetically useful carbocation-alkene reactions require a suitable termination step. We have already encountered one successful strategy in the reaction of alkenyl and allylic silanes and stannanes with electrophilic carbon (see Chapter 9). In those reactions, the silyl or stannyl substituent is eliminated and a stable alkene is formed. The increased reactivity of the silyl- and stannyl-substituted alkenes is also favorable to the synthetic utility of carbocation-alkene reactions because the reactants are more nucleophilic than the product alkenes. [Pg.862]


See other pages where Carbocations polymerization is mentioned: [Pg.375]    [Pg.670]    [Pg.236]    [Pg.375]    [Pg.8]    [Pg.375]    [Pg.670]    [Pg.236]    [Pg.375]    [Pg.8]    [Pg.151]    [Pg.124]    [Pg.513]    [Pg.516]    [Pg.516]    [Pg.103]    [Pg.320]    [Pg.748]    [Pg.17]    [Pg.41]    [Pg.4]    [Pg.91]    [Pg.1018]    [Pg.201]    [Pg.77]    [Pg.98]    [Pg.53]    [Pg.411]    [Pg.46]   
See also in sourсe #XX -- [ Pg.266 ]

See also in sourсe #XX -- [ Pg.266 ]

See also in sourсe #XX -- [ Pg.266 ]

See also in sourсe #XX -- [ Pg.244 , Pg.245 ]

See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Carbocations cationic polymerization

Carbocations polymerization initiators

Polymerization by Carbocations

Tetrahydrofuran carbocation polymerization

© 2024 chempedia.info